CS 295B/CS 395B
Systems for Knowledge
Discovery

Potpourri

'~ The University of Vermont

Done with this part of the course

Collect Transform Discover

—

This week:
« Return to PADS in the context of KDD

« Cross current: randomness + fuzz testing

Today

Start with fuzz testing paper

« Testing: not previously discussed in class

PADS redux (bigger context): may not finish discussion today
« Some new notation

« Try toread at the high level, understand why things are formalized
« What the formalization is doing/why it matters
« Don't worry about understanding how it works

Consider: how is the paper different from the previous PADS papg

Context: Seed Selection for Successful Fuzzing

Theme thus far:

« Using systems for knowledge discovery

* Many systems have nice properties, e.qg.,
All these properties are

« formal languages that are “correct by construction” over static programs

* tools that automate manual processes

» tools with statistical guarantees

Verification

Spoiler: can test at

“Does the software do what we built it to do2” many points

Note: “software,” not “program” — could be over a whole framework!

Static Dynamic

Analysis Analysis

— .
Techniques are

Before During After? orthogonal

Time: when we run the program

Draw diagram on board

Beizer’s Levels of Software Testing

Level 0 — No difference between testing and debugging
Level 1 - The purpose of testing is to show correctness
Level 2 - The purpose of testing is to show that the software does not work

Level 3 — The purpose of testing is not to prove anything specific, but to reduce
the risk of using the software

Level 4 - Testing is a mental discipline that helps all IT professionals develop
higher-quality software

from Ammann & Offutt’s Infroduction to Software Testing, 29 edition

Ammann & Offut’s Testing Levels

Integration — w.r.1. subsystem design
¢
Module — w.r.t. detailed design "
Class, file, module, etc.
.]) (independent logical component)
Unit — w.r.t. implementation _—

Function or method
(fromm Ammann & Offutt’s Introduction to Software Testing, 29 edition)

Ammann & Offut’s Testing Levels

Human component

(requires requirements, notion of

Acceptance — w.r.t. requirements or users’ needs client)

System — w.r.t. architectural design and overall behavior
Integration — w.r.1. subsystem design
Framework

Module — w.r.1. detailed design (temporal component)

Unit — w.r.t. implementation

(from Ammann & Offutt's Introduction to Software Testing, 29 edition)

Ammann & Offut’s Testing Levels

Acceptance — w.r.t. requirements or use eeds

System — w.r.t. architectural design and o

Many testing approaches

Integration — w.r.t. subsystem desig
Today: focus on fuzzing

Module — w.r.t. detailed desig Applied to the familiar levels

Unit — w.r.t. implementation

(from Ammann & Offutt’s Infroduction to Software Testing, 2"$

Background: Test suite generation

. Worst case: Cartesian
“Inputs” can mean many things: oroduct of domain

« Inputs to or parameters of to a function
* Numbers, strings, structs, instances of other abstract data types, etc.

* Not very complex, can easily reason over whole domain or equivalence classes

Aside: the simplicity is a lie

How you generate inputs matters

Think: testing image processing over 512x512 pixel RGBA images
« Many images will be nonsense

* i.e., only asmall subset of inputs is actually meaningful

This is a huge problem in machine learning

Background: Test suite generation

“Inputs” can mean many things:

* Inputs to or parameters of to a function

* Numbers, strings, structs, instances of other abstract data types, etc.

* Not very complex, can easily reason over whole domain or equivalence classes

« Also: whole programs

« Think: testing a compiler

Worst case:
exponential in domains
of each subcomponent

« Higher testing levels, more complex inputs (+ larger input space)

ON SOFTWARE QUALITY

Fuzzing:

Challenges and
Reflections

Marcel Bohme, Monash University

Cristian Cadar, Imperial College London

Abhik Roychoudhury, National University of Singapore

// We summarize the open challenges and
opportunities for fuzzing and symbolic

execution as they emerged in discussions
among researchers and practitioners

in a Shonan Meeting and that were
validated in a subsequent survey. ./

THE INTERNET AND the world’s
Digital Economy run on a shared,
critical open source software infra-
structure. A security flaw in a single
library can have severe consequences.
For instance, OpenSSL implements
protocols for secure communication
and is widely used by Internet serv-
ers, including the majority of HTTPS
websites. The Heartbleed vulnerabil-
ity in an earlier version of OpenSSL
would leak secret data and caused

Digital Object Identifier 10.1109/MS.2020.3016773
Date of current version: 13 August 2020

This work is licensed under a Creative Commons
Attribution 4.0 License. For more information, see

https://creativecommons.org/licenses/by/4.0/deed.ast.

huge financial losses. It is important
for us to develop practical and effec-
tive techniques to discover vulner-
abilities automatically and at scale.
Today, fuzzing is one of the most
promising techniques in this regard.
Fuzzing is an automatic bug and vul-
nerability discovery technique that
continuously generates inputs and
reports those that crash the program.
There are three main categories of
fuzzing tools and techniques: black-,
gray-, and white-box fuzzing.
Black-box fuzzing generates in-
puts without any knowledge of the

program. There are two main vari-
ants of black-box fuzzing: mutational
and generational. In mutational
black-box fuzzing, the fuzz campaign
starts with one or more seed inputs.
These seeds are modified to gener-
ate new inputs. Random mutations
are applied to random locations in
the input. For instance, a file fuzzer
may flip random bits in a seed file.
The process continues until a time
budget is exhausted. In generational
black-box fuzzing, inputs are gen-
erated from scratch. If a structural
specification of the input format is
provided, new inputs are generated
that meet the grammar. Peach (http://
community.peachfuzzer.com) is one
popular black-box fuzzer.

Gray-box fuzzing leverages pro-
gram instrumentation to get light-
weight feedback, which is used to
steer the fuzzer. Typically, a few con-
trol locations in the program are in-
strumented at the compile time and an
initial seed corpus is provided. Seed
inputs are mutated to generate new in-
puts. Generated inputs that cover new
control locations and, thus, increase
code coverage are added to the seed
corpus. The coverage feedback allows
a gray-box fuzzer to gradually reach
deeper into the code. To identify bugs
and vulnerabilities, sanitizers inject
assertions into the program. Existing
gray-box fuzzing tools include Ameri-
can fuzzy lop (AFL) (https:/lcamtuf
.coredump.cx/afl/), LibFuzzer (https://
llvm.org/docs/LibFuzzer.html), and
Honggfuzz (https://github.com/
google/honggfuzz).

White-box fuzzing is based on
a technique called symbolic execu-
tion,! which uses program analysis
and constraint solvers to system-
atically enumerate interesting pro-
gram paths. The constraint solvers
used as the back end in white-box
fuzzing are Satisfiability Modulo

MAY/JUNE 2021 | IEEE SOFTWARE 79

Background: fuzzing

ON SOFTWARE QUALITY

Fuzzing:

Challenges and
Reflections

Marcel Bohme, Monash University

Cristian Cadar, Imperial College London

Abhik Roychoudhury, National University of Singapore

// We summarize the open challenges and
opportunities for fuzzing and symbolic

execution as they emerged in discussions
among researchers and practitioners

in a Shonan Meeting and that were
validated in a subsequent survey. ./

THE INTERNET AND the world’s
Digital Economy run on a shared,
critical open source software infra-
structure. A security flaw in a single
library can have severe consequences.
For instance, OpenSSL implements
protocols for secure communication
and is widely used by Internet serv-
ers, including the majority of HTTPS
websites. The Heartbleed vulnerabil-
ity in an earlier version of OpenSSL
would leak secret data and caused

Digital Object Identifier 10.1109/MS.2020.3016773
Date of current version: 13 August 2020

This work is licensed under a Creative Commons
Attribution 4.0 License. For more information, see

https://creativecommons.org/licenses/by/4.0/deed.ast.

huge financial losses. It is important
for us to develop practical and effec-
tive techniques to discover vulner-
abilities automatically and at scale.
Today, fuzzing is one of the most
promising techniques in this regard.
Fuzzing is an automatic bug and vul-
nerability discovery technique that
continuously generates inputs and
reports those that crash the program.
There are three main categories of
fuzzing tools and techniques: black-,
gray-, and white-box fuzzing.
Black-box fuzzing generates in-
puts without any knowledge of the

program. There are two main vari-
ants of black-box fuzzing: mutational
and generational. In mutational
black-box fuzzing, the fuzz campaign
starts with one or more seed inputs.
These seeds are modified to gener-
ate new inputs. Random mutations
are applied to random locations in
the input. For instance, a file fuzzer
may flip random bits in a seed file.
The process continues until a time
budget is exhausted. In generational
black-box fuzzing, inputs are gen-
erated from scratch. If a structural
specification of the input format is
provided, new inputs are generated
that meet the grammar. Peach (http://
community.peachfuzzer.com) is one
popular black-box fuzzer.

Gray-box fuzzing leverages pro-
gram instrumentation to get light-
weight feedback, which is used to
steer the fuzzer. Typically, a few con-
trol locations in the program are in-
strumented at the compile time and an
initial seed corpus is provided. Seed
inputs are mutated to generate new in-
puts. Generated inputs that cover new
control locations and, thus, increase
code coverage are added to the seed
corpus. The coverage feedback allows
a gray-box fuzzer to gradually reach
deeper into the code. To identify bugs
and vulnerabilities, sanitizers inject
assertions into the program. Existing
gray-box fuzzing tools include Ameri-
can fuzzy lop (AFL) (https:/lcamtuf
.coredump.cx/afl/), LibFuzzer (https://
llvm.org/docs/LibFuzzer.html), and
Honggfuzz (https://github.com/
google/honggfuzz).

White-box fuzzing is based on
a technique called symbolic execu-
tion,! which uses program analysis
and constraint solvers to system-
atically enumerate interesting pro-
gram paths. The constraint solvers
used as the back end in white-box
fuzzing are Satisfiability Modulo

MAY/JUNE 2021 | IEEE SOFTWARE 79

Background: fuzzing

ON SOFTWARE QUALITY

Fuzzing:

Challenges and
Reflections

Marcel Bohme, Monash University

Cristian Cadar, Imperial College London

Abhik Roychoudhury, National University of Singapore

// We summarize the open challenges and
opportunities for fuzzing and symbolic

execution as they emerged in discussions
among researchers and practitioners

in a Shonan Meeting and that were
validated in a subsequent survey. ./

THE INTERNET AND the world’s
Digital Economy run on a shared,
critical open source software infra-
structure. A security flaw in a single
library can have severe consequences.
For instance, OpenSSL implements
protocols for secure communication
and is widely used by Internet serv-
ers, including the majority of HTTPS
websites. The Heartbleed vulnerabil-
ity in an earlier version of OpenSSL
would leak secret data and caused

Digital Object Identifier 10.1109/MS.2020.3016773
Date of current version: 13 August 2020

This work is licensed under a Creative Commons
Attribution 4.0 License. For more information, see

https://creativecommons.org/licenses/by/4.0/deed.ast.

huge financial losses. It is important
for us to develop practical and effec-
tive techniques to discover vulner-
abilities automatically and at scale.
Today, fuzzing is one of the most
promising techniques in this regard.
Fuzzing is an automatic bug and vul-
nerability discovery technique that
continuously generates inputs and
reports those that crash the program.
There are three main categories of
fuzzing tools and techniques: black-,
gray-, and white-box fuzzing.
Black-box fuzzing generates in-
puts without any knowledge of the

program. There are two main vari-
ants of black-box fuzzing: mutational
and generational. In mutational
black-box fuzzing, the fuzz campaign
starts with one or more seed inputs.
These seeds are modified to gener-
ate new inputs. Random mutations
are applied to random locations in
the input. For instance, a file fuzzer
may flip random bits in a seed file.
The process continues until a time
budget is exhausted. In generational
black-box fuzzing, inputs are gen-
erated from scratch. If a structural
specification of the input format is
provided, new inputs are generated
that meet the grammar. Peach (http://
community.peachfuzzer.com) is one
popular black-box fuzzer.

Gray-box fuzzing leverages pro-
gram instrumentation to get light-
weight feedback, which is used to
steer the fuzzer. Typically, a few con-
trol locations in the program are in-
strumented at the compile time and an
initial seed corpus is provided. Seed
inputs are mutated to generate new in-
puts. Generated inputs that cover new
control locations and, thus, increase
code coverage are added to the seed
corpus. The coverage feedback allows
a gray-box fuzzer to gradually reach
deeper into the code. To identify bugs
and vulnerabilities, sanitizers inject
assertions into the program. Existing
gray-box fuzzing tools include Ameri-
can fuzzy lop (AFL) (https:/lcamtuf
.coredump.cx/afl/), LibFuzzer (https://
llvm.org/docs/LibFuzzer.html), and
Honggfuzz (https://github.com/
google/honggfuzz).

White-box fuzzing is based on
a technique called symbolic execu-
tion,! which uses program analysis
and constraint solvers to system-
atically enumerate interesting pro-
gram paths. The constraint solvers
used as the back end in white-box
fuzzing are Satisfiability Modulo

MAY/JUNE 2021 | IEEE SOFTWARE 79

Background: fuzzing

ON SOFTWARE QUALITY

Fuzzing:

Challenges and
Reflections

Marcel Bohme, Monash University

Cristian Cadar, Imperial College London

Abhik Roychoudhury, National University of Singapore

// We summarize the open challenges and
opportunities for fuzzing and symbolic

execution as they emerged in discussions
among researchers and practitioners

in a Shonan Meeting and that were
validated in a subsequent survey. ./

THE INTERNET AND the world’s
Digital Economy run on a shared,
critical open source software infra-
structure. A security flaw in a single
library can have severe consequences.
For instance, OpenSSL implements
protocols for secure communication
and is widely used by Internet serv-
ers, including the majority of HTTPS
websites. The Heartbleed vulnerabil-
ity in an earlier version of OpenSSL
would leak secret data and caused

Digital Object Identifier 10.1109/MS.2020.3016773
Date of current version: 13 August 2020

This work is licensed under a Creative Commons
Attribution 4.0 License. For more information, see

https://creativecommons.org/licenses/by/4.0/deed.ast.

huge financial losses. It is important
for us to develop practical and effec-
tive techniques to discover vulner-
abilities automatically and at scale.
Today, fuzzing is one of the most
promising techniques in this regard.
Fuzzing is an automatic bug and vul-
nerability discovery technique that
continuously generates inputs and
reports those that crash the program.
There are three main categories of
fuzzing tools and techniques: black-,
gray-, and white-box fuzzing.
Black-box fuzzing generates in-
puts without any knowledge of the

program. There are two main vari-
ants of black-box fuzzing: mutational
and generational. In mutational
black-box fuzzing, the fuzz campaign
starts with one or more seed inputs.
These seeds are modified to gener-
ate new inputs. Random mutations
are applied to random locations in
the input. For instance, a file fuzzer
may flip random bits in a seed file.
The process continues until a time
budget is exhausted. In generational
black-box fuzzing, inputs are gen-
erated from scratch. If a structural
specification of the input format is
provided, new inputs are generated
that meet the grammar. Peach (http://
community.peachfuzzer.com) is one
popular black-box fuzzer.

Gray-box fuzzing leverages pro-
gram instrumentation to get light-
weight feedback, which is used to
steer the fuzzer. Typically, a few con-
trol locations in the program are in-
strumented at the compile time and an
initial seed corpus is provided. Seed
inputs are mutated to generate new in-
puts. Generated inputs that cover new
control locations and, thus, increase
code coverage are added to the seed
corpus. The coverage feedback allows
a gray-box fuzzer to gradually reach
deeper into the code. To identify bugs
and vulnerabilities, sanitizers inject
assertions into the program. Existing
gray-box fuzzing tools include Ameri-
can fuzzy lop (AFL) (https:/lcamtuf
.coredump.cx/afl/), LibFuzzer (https://
llvm.org/docs/LibFuzzer.html), and
Honggfuzz (https://github.com/
google/honggfuzz).

White-box fuzzing is based on
a technique called symbolic execu-
tion,! which uses program analysis
and constraint solvers to system-
atically enumerate interesting pro-
gram paths. The constraint solvers
used as the back end in white-box
fuzzing are Satisfiability Modulo

MAY/JUNE 2021 | IEEE SOFTWARE 79

Background: fuzzing

ON SOFTWARE QUALITY

Fuzzing:

Challenges and
Reflections

Marcel Bohme, Monash University

Cristian Cadar, Imperial College London

Abhik Roychoudhury, National University of Singapore

// We summarize the open challenges and
opportunities for fuzzing and symbolic

execution as they emerged in discussions
among researchers and practitioners

in a Shonan Meeting and that were
validated in a subsequent survey. ./

THE INTERNET AND the world’s
Digital Economy run on a shared,
critical open source software infra-
structure. A security flaw in a single
library can have severe consequences.
For instance, OpenSSL implements
protocols for secure communication
and is widely used by Internet serv-
ers, including the majority of HTTPS
websites. The Heartbleed vulnerabil-
ity in an earlier version of OpenSSL
would leak secret data and caused

Digital Object Identifier 10.1109/MS.2020.3016773
Date of current version: 13 August 2020

This work is licensed under a Creative Commons
Attribution 4.0 License. For more information, see

https://creativecommons.org/licenses/by/4.0/deed.ast.

huge financial losses. It is important
for us to develop practical and effec-
tive techniques to discover vulner-
abilities automatically and at scale.
Today, fuzzing is one of the most
promising techniques in this regard.
Fuzzing is an automatic bug and vul-
nerability discovery technique that
continuously generates inputs and
reports those that crash the program.
There are three main categories of
fuzzing tools and techniques: black-,
gray-, and white-box fuzzing.
Black-box fuzzing generates in-
puts without any knowledge of the

program. There are two main vari-
ants of black-box fuzzing: mutational
and generational. In mutational
black-box fuzzing, the fuzz campaign
starts with one or more seed inputs.
These seeds are modified to gener-
ate new inputs. Random mutations
are applied to random locations in
the input. For instance, a file fuzzer
may flip random bits in a seed file.
The process continues until a time
budget is exhausted. In generational
black-box fuzzing, inputs are gen-
erated from scratch. If a structural
specification of the input format is
provided, new inputs are generated
that meet the grammar. Peach (http://
community.peachfuzzer.com) is one
popular black-box fuzzer.

Gray-box fuzzing leverages pro-
gram instrumentation to get light-
weight feedback, which is used to
steer the fuzzer. Typically, a few con-
trol locations in the program are in-
strumented at the compile time and an
initial seed corpus is provided. Seed
inputs are mutated to generate new in-
puts. Generated inputs that cover new
control locations and, thus, increase
code coverage are added to the seed
corpus. The coverage feedback allows
a gray-box fuzzer to gradually reach
deeper into the code. To identify bugs
and vulnerabilities, sanitizers inject
assertions into the program. Existing
gray-box fuzzing tools include Ameri-
can fuzzy lop (AFL) (https:/lcamtuf
.coredump.cx/afl/), LibFuzzer (https://
llvm.org/docs/LibFuzzer.html), and
Honggfuzz (https://github.com/
google/honggfuzz).

White-box fuzzing is based on
a technique called symbolic execu-
tion,! which uses program analysis
and constraint solvers to system-
atically enumerate interesting pro-
gram paths. The constraint solvers
used as the back end in white-box
fuzzing are Satisfiability Modulo

MAY/JUNE 2021 | IEEE SOFTWARE 79

Background: fuzzing

Task: test
whether an agent has learned t
o)

play PacMan
Black b Just i
oXx — just interact via controll
oller

06/13

302/ 133 \!L\\y\\v\\m\

Submittes

\ 3 onmem-.
de carnin® nvir
- Aﬂ'sin P\aﬂorm for Genera\ Agents

arnal ©
\\L‘-XT @cs- u ;\LBE\(’Y.\ .CA

Grey box -
Arcade Learning Environment
en

o “\\\\’\B\C ;\LRE.

Ibertas (ftmada

(ALE

are
atom, A

arc G- Bellem
versity of Alberte: EdmoT

Unv
ar Naddaf) B
Ykl:;xrical R('sulfs Inc.; Vancoul er;
h (70l~umb1a. Canadd
anade
fo
rD
ee
V) P s
nder Do.ﬁ[e'nforce
2 -BI:
mma Toscf?’o NOTCCB;-‘"d Rcv’,'r:ent Lea
»John Fo{cyzE’?R D,s‘;_";’t ICSE zgg'ng
, Kalej B .
eigh C’a'y’UZ;E
, Davig
White b

Britis
Albertas C

Jensen

Joel Venes®
Micha® owling
S on,
[:'nnwrsity of Albertas bdmunt
Absﬂact
. Arcade® Lear!
1n thi e W atroduce the Arcac e
e ' etho ology e
. gform 3 me’ Y ma o
leng® prod on e “;; ter\\\\o\o . ALE \)m\m\ ABsTRA ot o
(\o;\\z\iﬂ—\ﬂ(,vmdc Al te! ; e A o i
iTone s, each e ption i
e : : Markable o P TCINf Amh
2 \ayers: © U com € resy nforce, Sy
Hum? el-b th Petitive ults op ¢, ment Jeq e Dav
e at beat fy, e on arning
pes o it 2 ’mh; o l’lxm‘,”““!l.mu ',‘"w tasks ,‘;u‘(m.mm College
=ty st 1 D RL, . mans 5 s the L agents
“‘Ut\\ﬂnu ofn § suc L meet lave 5
o o e ore: achjes De,
‘ - 5 ki €Xa excee, ve ee,
ng approe e In incre, rese, s Stare, tmples j; “HHIu,“‘ d % 2 R o
pyes et research 1B e arcraf | nclude gy ed we to pr
pench esearch | gly com compay, 1 Doy € A8ents tithm kg 0 Promine
for poth el ul Deep Rl:u not Plex enyjy evelop Nied by 4, A2 and g, s agent that beg ”lm,“““,“ nce in 2013
1 ept otimens ¥ 288 Gt m s demo o N
methodo\ gy ade the same py '\mml.(,’,! “il'\\llh ‘n,"“’”\ “”L};'u\ that ’“‘;“"’-Hhm ment (\”" seven \: \,‘”“7“/1”, e 41(,”””‘ -
B Y e raTe eve, ope; ate r rty erfc A ALE Atarj g, he-5 D lear, s
Al of a ‘H(;Q (h.‘_l)‘“‘l’?ulnw as the - “mul,'““""-unl.,”]""'l‘l the s vell ALE Atar; ‘) [6, 36 mll Bame m,,‘u (traditjo 08 t “d first pre.
); I arning * non n th, 18 of t ® pace of rithy, as the he m th onal aining
bec itself ¢ g policj deep f at a deg, hese of 15 [39) de facy ir subg i 76 training i
en onfounds g O Uunction i . P Ct ger perfor Deeppgo 10 deey sequer ade Le t deep)
. v 1gent ds o often nit 4 vork ey| Mance 'PMing P RL be At Natgyye . ring) RL
; ‘“troauc“ d““" A bosg /\““'("’“II'I’ bility h:1’”””"4:.(1,,"7“""'1m(\\, ‘nk,nxn-'i(.“',‘ When u“,"JI‘,‘“s«uI]..H n"in,,.“k;"‘J‘.qy(., Aj’\fl“”"'nn,,
ope behavioy, Y m Ocal; ncoy, Tow At, lance Y sho stand. or ner stabl;
RL Ped To, avioy, utat, ize ¢ mpre} W ari | ein wed g dard f, W in shod
T VB al teg, e th, rror cher ga has se 31 a ne for raining i
A \0“%‘5\1\“ ng ‘Hln,"”l(n\ pu,\““ the ln\|‘, /; for R :" ‘m,,,,“”\“'hl\\,”(',‘"‘ha “““"‘\ and h:“w.u_q)p(“‘;' of 49 v\"“u ,lu“,,f;“n,,,,],(‘(””’“.\41“”
o seael cha agents nent ests rld com, caliy ALE Ay hm petitiy,
. o i e ’ eny e m, ari g sur ive
general ¢ pete over environ, and a lighpon ul““.’,'l testing g, this eng, uate Ry ,,,',’;"’:,n,,,\ !;’“ ski o games I’”,,Iv..\\,“k %
o g Ments apg .8 box enui. 2 me we h; eny eth hat nans J, 3
il e tellige ”llrlu s and f ,,s P 'nml,!',‘” testing ; ""n,,m,.‘(Work for ‘(’ e ironme n,\‘(ul\ and h, Were (-\'m,,‘,“\ learn to
5 » arll! a ce. Tc alsify lels, We 1. tame nts thy eep mer - & o o "
otion nd easily g; ’,\ Box m,,'vm Promip e test ,uu',‘,,“,n;k that "1 permit appealip, mes thay ,“q,] heidg o - (“”\““(: oy
¢ d str en &t s "k that al, ealing a i) b :
Jdeas ha ibuteq /.(,,\vu,,u te 't laim g, ’,‘ havioy ,,.\1;‘“.1\]’l m”,“”)\.r ”"'u»[”“",\d i “”’;”I)I(-v\”‘ ';(l'”” :
% ; i oSt confi 1t de, t E " Atal: ar . .
= o - — tating rep (,nnm:m u,‘h«'l!.mn‘n, Iree IP,"“"\ box ”‘“ ALE i to e %€, a3 N prioy
ot et oducibily, s main oot Atari b asten . 25 colle
jpers O o % ehavi, ility are jg c unte, ore, ; as i ki
Kuiper : R hlqum‘['L- ,)n..,‘,‘,v ral Tegtjp,) olated l;y;”“"“v ,rlw.m(. For 15Sertion, ',;,‘””' . e
crionS SV lensen! 1 il e-B; g Fra g hat ap ex ab awback
etitions coo Univers Emumg ,"nm R Tamewor P ,/ or that g "E€ts tra amiple, £, ’("” “”“““)“” .
Reinforc® 12 pages ;r/ Ao \1.,\,‘0,\':‘. John ,‘" ICSE Z'"“Wp Reing bak nits u-\,,,”‘ “"'u-, . l;‘:“"'lu,. Bre, ;’“v\ ,,U;‘("' agent ,y("‘"u-[‘
. o e L oy olagd pr - E forceme, avior g that oy el ako *hable havio,
“Mm“‘“\ e de PS:/doiorgyyg. (O Setts Amhere) 508 0 NoT Th it coul gt Mode Ut learn gg p. coting or
it ((‘%‘\\'(‘i r 1 18/10.1145 Wference'yy) < \,,,,,;M: Clary CITE age is lack of alsify g, I([20]. N © build 8 the
i * INT S/nnng. h Col Day gents test Y such } S, i
RO, wnnn,, 1, Nevw, Clege id ha, are sof ng is hypot em cy)
Reir DUC’ g In p, s buggt® . Ware, o o5 o
force JCTIL nn ork, NY. 11 RL B Te & 5 concer sem :
o C Y, UL L, esting d erning cure
de u-lnu\,”'l t learn; ON SA, e .“ hich ho g L s, o i
Lot TSN FREY m[wlv RL aj, received iches th, Without G after o,
B ol £ s (25, 2y 0TS ang e ol oot tests all, R
25, 36]. N, ms ang ased at repr T verif L
Ne: E atte, od, e
n ”‘-n,h all (‘/_“n,'u.,‘,,,”&vnl“m due ucibility ation
21y all of thjg 0 2b0ut o the i deep
th on o eir ,.“,.”‘\fu,,.m.,
® Mer

(‘O“\“\\

ON SOFTWARE QUALITY

Fuzzing:

Challenges and
Reflections

Marcel Bohme, Monash University

Cristian Cadar, Imperial College London

Abhik Roychoudhury, National University of Singapore

// We summarize the open challenges and
opportunities for fuzzing and symbolic

execution as they emerged in discussions
among researchers and practitioners

in a Shonan Meeting and that were
validated in a subsequent survey. ./

THE INTERNET AND the world’s
Digital Economy run on a shared,
critical open source software infra-
structure. A security flaw in a single
library can have severe consequences.
For instance, OpenSSL implements
protocols for secure communication
and is widely used by Internet serv-
ers, including the majority of HTTPS
websites. The Heartbleed vulnerabil-
ity in an earlier version of OpenSSL
would leak secret data and caused

Digital Object Identifier 10.1109/MS.2020.3016773
Date of current version: 13 August 2020

This work is licensed under a Creative Commons
Attribution 4.0 License. For more information, see

https://creativecommons.org/licenses/by/4.0/deed.ast.

huge financial losses. It is important
for us to develop practical and effec-
tive techniques to discover vulner-
abilities automatically and at scale.
Today, fuzzing is one of the most
promising techniques in this regard.
Fuzzing is an automatic bug and vul-
nerability discovery technique that
continuously generates inputs and
reports those that crash the program.
There are three main categories of
fuzzing tools and techniques: black-,
gray-, and white-box fuzzing.
Black-box fuzzing generates in-
puts without any knowledge of the

program. There are two main vari-
ants of black-box fuzzing: mutational
and generational. In mutational
black-box fuzzing, the fuzz campaign
starts with one or more seed inputs.
These seeds are modified to gener-
ate new inputs. Random mutations
are applied to random locations in
the input. For instance, a file fuzzer
may flip random bits in a seed file.
The process continues until a time
budget is exhausted. In generational
black-box fuzzing, inputs are gen-
erated from scratch. If a structural
specification of the input format is
provided, new inputs are generated
that meet the grammar. Peach (http://
community.peachfuzzer.com) is one
popular black-box fuzzer.

Gray-box fuzzing leverages pro-
gram instrumentation to get light-
weight feedback, which is used to
steer the fuzzer. Typically, a few con-
trol locations in the program are in-
strumented at the compile time and an
initial seed corpus is provided. Seed
inputs are mutated to generate new in-
puts. Generated inputs that cover new
control locations and, thus, increase
code coverage are added to the seed
corpus. The coverage feedback allows
a gray-box fuzzer to gradually reach
deeper into the code. To identify bugs
and vulnerabilities, sanitizers inject
assertions into the program. Existing
gray-box fuzzing tools include Ameri-
can fuzzy lop (AFL) (https:/lcamtuf
.coredump.cx/afl/), LibFuzzer (https://
llvm.org/docs/LibFuzzer.html), and
Honggfuzz (https://github.com/
google/honggfuzz).

White-box fuzzing is based on
a technique called symbolic execu-
tion,! which uses program analysis
and constraint solvers to system-
atically enumerate interesting pro-
gram paths. The constraint solvers
used as the back end in white-box
fuzzing are Satisfiability Modulo

MAY/JUNE 2021 | IEEE SOFTWARE 79

Mutation vs. Generation

So Random

Cannot take randomness for granted

NOT about

« Recurring problem in computing cryptographically
secure RNGs

- About uniformity, not true randomness: (different problem)
* Want: uniform random selection over some domain
* Have: the ability to draw from some function of that domain

* Need: a better understanding of the mapping

W et
U ‘{‘,,eﬁ'x\‘!

PO oo
aive SO o
o I
sV penc’ S
e Honle € e, @
Y i s S92 orogrt ey e
e GpeC s P s e,
SPBC O of S5cos. i of g™ oo
SPEon® gt Tgnats Sty 8 gt T
RO ey S FOB on Sy o
8 & .

oy e O o Y

St

Examples M:Mﬁ
Mostly see this in criticism of benchmarks: W;“WM“”;M;;MW
« HPC - SPEC benchmark (SIGMETRICS1998
« Reinforcement learning — ALE (NeurlPS 2018
« Computer Vision — CIFAR-10 & ImageNet (CoRR 2014 gx

« Software Testing — seed selection (ISSTA 2021 4 T

LTSN o g, 5,0 g, By iy

D Bk O 0, 5 o i, P
ot ey g, u : e ey o Ste,
° W T H k i 2 \\cE o o0 B gy o S el r"""’u:"”:’ 2, bff;’ e o""‘gi""ﬂ'%"“ E
W Lt AR S 0y it Ay Cop " 3 £ B oy Btz Py, o .
2 Ty o e e e i N N N A Y sy L0 01 Sy, oty
i 53 & O 5 W Qg g, Whe, ey, g, & by, Mcge S ey g, by o, O, Yeg Psigy 4. 4,
Q: | Y d h e h PP g« I ey e A
K WP AW “Secy, 0,
T &, RO o) o

A: Lifecycle of research

Food for thought

Connections between software testing and experimentation
Software testing as knowledge discovery for software?

s this test case an edge case or a representative of a larger classe
« Connections to models (simplified views of the world)
« Connections to machine learning

« Connections to causality
Methodology of testing vs. testing of methodology vs. testing as methodology

Role of randomness

The Next 700 Programming Languages

P. J. Landin
Univac Division of Sperry Rand Corp., New York, New York

“. .. today ... 1,700 special programming languages used to ‘com-
municate’ in over 700 application areas.”’—Computer Software Issues,
an American Mathematical Association Prospectus, July 1965,

A family of unimplemented computing languages is de-
scribed that is intended to span differences of application area
by a unified framework. This framework dictates the rules
ckout the uses of user-coined names, and the conventions
about characterizing functional relationships. Within this frame-
work the design of a specific language splits into two inde-
pendent parts. One is the choice of written appearances of
programs (or more generally, their physical representation).
The o.her is the choice of the abstract entities (such as numbers,
character-strings, lists of them, functional relations among
them) that can be referred to in the language.

The system is biased towards “expressions” rather than
“statements.” It includes a nonprocedural (purely functional)
subsystem that aims to expand the class of users' needs that
can be met by a single print-instruction, without sacrificing the
important properties that make conventional right-hand-side
expressions easy to construct and understand.

1. Introduction

Most programming languages are partly a way of
expressing things in terms of other things and partly a
basic set of given things. The Iswim (If you See What I
Mean) system is a byproduct of an attempt to disentangle
these two aspects in some current languages.

This attempt has led the author to think that many
linguistic idiosyncracies are concerned with the former
rather than the latter, whereas aptitude for a particular
class of tasks is essentially determined by the latter rather
than the former. The conclusion follows that many
language characteristics are irrelevant to the alleged
problem orientation.

Iswim is an attempt at a general purpose system for
describing things in terms of other things, that can be
problem-oriented by appropriate choice of “primitives.”
So it is not a language so much as a family of languages,
of which each member is the result of choosing a set of
primitives. The possibilities concerning this set and what
is needed to specify such a set are discussed below.

Iswiym is not alone in being a family, even after mere
syntactic variations have been discounted (see Section 4).
In practice, this is true of most languages that achieve
more than one implementation, and if the dialects are well
disciplined, they might with luck be characterized as

Presented at an ACM Programming Languages and Pragmatics
Conference, San Dimas, California, August 1965.

1 There is no more use or mention of X in this paper—cognoscenti
will nevertheless sense an undercurrent. A not inappropriate title
would have been “Church without lambda.””

Volume 9 / Number 3 / March, 1966

differences in the set of things provided by the library or
operating system. Perhaps had Arcor G0 been launched
as a family instead of proclaimed as a language, it would
have fielded some of the less relevant criticisms of its
deficiencies.

At first sight the facilities provided in Iswim will appear
comparatively meager. This appearance will be especially
misleading to someone who has not appreciated how much
of current manuals are devoted to the explanation of
common (i.e., problem-orientation independent) logical
structure rather than problem-oriented specialties. For
example, in almost every language a user can coin names,
obeying certain rules about the contexts in which the
name is used and their relation to the textual segments
that introduce, define, declare, or otherwise constrain its
use. These rules vary considerably from one language to
another, and frequently even within a single language
there may be different conventions for different classes of
names, with near-analogies that come irritatingly close to
being exact. (Note that restrictions on what names can
be coined also vary, but these are trivial differences. When
they have any logical significance it is likely to be perni-
cious, by leading to puns such as ALcor’s integer labels.)

So rules about user-coined names is an area in which
we might expect to see the history of computer applica-
tions give ground to their logic. Another such area is in
specifying functional relations. In fact these two areas are
closely related since any use of a user-coined name im-
plicitly involves a functional relation; e.g., compare

z(x+a) Fb+2¢)

wherez = b + 2¢ where f(z) = z(z+a)
Iswim is thus part programming language and part pro-
gram for research. A possible first step in the research
program is 1700 doctoral theses called “A Correspondence
between 2 and Church’s N\-notation.”*

2. The where-Notation

In ordinary mathematical communication, these uses
of ‘where’ require no explanation. Nor do the following:

fo+2¢) + f(2b—c)

where [(z) = z(z+a)

f(b+2¢) + f(2b—c)

where [(z) = z(z+a)

and b = u/(u+1)

and ¢ = v/(v41)

9(f where f(x) = ax* + bz + ¢,
u/(ut1),
v/ (v+1))

where ¢(f, p,) = [(p+2q, 2p—q)

Communications of the ACM

Context: Next 700 Data
Description Languages

“...today ...1,700 special programming
languages used to ‘communicate’ in

over 700 application areas.”

Computer Software Issues, an American Mathematical
Association Prospectus, July 1965

“Most programming languages are
partly a way of expressing things in

terms of other things and partly a
basic set of given things.”

Languages differ in:

 “application area”

4

“phase of computer use’

physical appearance

logical structure

Languages differ in:

. . then: COBOL
o “application area” now: EOBOL spreadsheets

) then: FORTRAN
now: FORTFRAN-via Numpy

“phase of computer use’

physical appearance then: ALGOL

now: general purpose lang. of your

logical structure choice

Languages differ in:

¢ ”applicatiOn al’ea” "high-level programming, program

assembly, job scheduling, etc.”

“phase of computer use’

Today: would separate into
vs. intermediate or internal

physical appearance representation

logical structure

Languages differ in:

o uapplication area” Still true today!

”phase Of Computer use" Physical appearance: syntax

Logical structure: evaluation order

physical dppearance (arguments, compiler passes, etc.)

logical structure

The Next 700 Programming Languages

P. J. Landin
Univac Division of Sperry Rand Corp., New York, New York

“. .. today ... 1,700 special programming languages used to ‘com-
municate’ in over 700 application areas.”’—Computer Software Issues,
an American Mathematical Association Prospectus, July 1965,

A family of unimplemented computing languages is de-
scribed that is intended to span differences of application area
by a unified framework. This framework dictates the rules
ckout the uses of user-coined names, and the conventions
about characterizing functional relationships. Within this frame-
work the design of a specific language splits into two inde-
pendent parts. One is the choice of written appearances of
programs (or more generally, their physical representation).
The o.her is the choice of the abstract entities (such as numbers,
character-strings, lists of them, functional relations among
them) that can be referred to in the language.

The system is biased towards “expressions” rather than
“statements.” It includes a nonprocedural (purely functional)
subsystem that aims to expand the class of users' needs that
can be met by a single print-instruction, without sacrificing the
important properties that make conventional right-hand-side
expressions easy to construct and understand.

1. Introduction

Most programming languages are partly a way of
expressing things in terms of other things and partly a
basic set of given things. The Iswim (If you See What I
Mean) system is a byproduct of an attempt to disentangle
these two aspects in some current languages.

This attempt has led the author to think that many
linguistic idiosyncracies are concerned with the former
rather than the latter, whereas aptitude for a particular
class of tasks is essentially determined by the latter rather
than the former. The conclusion follows that many
language characteristics are irrelevant to the alleged
problem orientation.

Iswim is an attempt at a general purpose system for
describing things in terms of other things, that can be
problem-oriented by appropriate choice of “primitives.”
So it is not a language so much as a family of languages,
of which each member is the result of choosing a set of
primitives. The possibilities concerning this set and what
is needed to specify such a set are discussed below.

Iswiym is not alone in being a family, even after mere
syntactic variations have been discounted (see Section 4).
In practice, this is true of most languages that achieve
more than one implementation, and if the dialects are well
disciplined, they might with luck be characterized as

Presented at an ACM Programming Languages and Pragmatics
Conference, San Dimas, California, August 1965.

1 There is no more use or mention of X in this paper—cognoscenti
will nevertheless sense an undercurrent. A not inappropriate title
would have been “Church without lambda.””

Volume 9 / Number 3 / March, 1966

differences in the set of things provided by the library or
operating system. Perhaps had Arcor G0 been launched
as a family instead of proclaimed as a language, it would
have fielded some of the less relevant criticisms of its
deficiencies.

At first sight the facilities provided in Iswim will appear
comparatively meager. This appearance will be especially
misleading to someone who has not appreciated how much
of current manuals are devoted to the explanation of
common (i.e., problem-orientation independent) logical
structure rather than problem-oriented specialties. For
example, in almost every language a user can coin names,
obeying certain rules about the contexts in which the
name is used and their relation to the textual segments
that introduce, define, declare, or otherwise constrain its
use. These rules vary considerably from one language to
another, and frequently even within a single language
there may be different conventions for different classes of
names, with near-analogies that come irritatingly close to
being exact. (Note that restrictions on what names can
be coined also vary, but these are trivial differences. When
they have any logical significance it is likely to be perni-
cious, by leading to puns such as Argor’s integer labels.)

So rules about user-coined names is an area in which
we might expect to see the history of computer applica-
tions give ground to their logic. Another such area is in
specifying functional relations. In fact these two areas are
closely related since any use of a user-coined name im-
plicitly involves a functional relation; e.g., compare

z(x+a) Fb+2¢)

wherez = b + 2 where f(z) = z(z+a)
Iswim is thus part programming language and part pro-
gram for research. A possible first step in the research
program is 1700 doctoral theses called “A Correspondence
between 2 and Church’s N\-notation.”*

2. The where-Notation
In ordinary mathematical communication, these uses
of ‘where’ require no explanation. Nor do the following:

fo+2¢) + f(2b—c)

where [(z) = z(z+a)

f(b+2¢) + f(2b—c)

where [(z) = z(z+a)

and b = u/(u+1)

and ¢ = v/(v41)

9(f where f(x) = ax* + bz + ¢,
u/(ut1),
v/ (v+1))

where ¢(f, p,) = [(p+2q, 2p—q)

Communications of the ACM

Context: Next 700 Data
Description Languages

Interlude: Lambda Papers

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Structure and

Interpretation
HNC
s INSTITUTE OF FERhne of Computer
m::%;‘x‘i‘:m. INTELLICE AI Memo No. 353 Programs
Ar
LAMBDA ”‘ﬂo 3
AL Memo No- 349 SCHEME 79
OR EXTENDED LAMBDA THE ULTIMATE IMPERATIVE
RF

ERPRETE
AN INT ¥
y Lewis st

Gerald Jay Sussman and Gu

{th
and Hewitt] {Smith

by
Guy Lewis Steele Jr. and Ger.

ald Jay Sussr

Second Edition

H
t age i
mscr-ri:'-wmd by Acfoi;s [Grf:t_ o usﬂy;‘nu: 1;‘;:2“ “; Abstract: st"ﬂct .
terpr tende ple <
jmplemented ‘\"\,:‘Ecnu”‘“ ; Tn‘; .p):;rpoi' of this 18 We demonstrate how to model the following common prof Viey In th
1anbda calcu {zation. terms of an applicative order language similar to LI usy f LAHB is Pape
pruc.’:‘ ” Hicro-PLANNE Simple Recursion fu al Une 04 4 ¢
L confusion ““s:.‘:cursi“ control Iteration 1 nction t11’Jn.1
alleviate T SO ot non- Compound Statements and Expressions "‘1Oht 1nv°c
clarifying ’n:‘; LISP. . control structures: GO TO and Assignment b""ee s into t‘t
nost 1anguadh Lo yse ';“:sas nmw‘n?t%:hn f¢ Continuation-Passing envip, n fory he
2) °":1a tehin ?.;ew axperimentd Escape Expressions the "'Mn:, ang
atterd BoCinple CORCTEES Tl Fluid Variables as 4, "tent It 4
(3) Do ing semantd pions. The £47¢ Call by Name, Call by Need, and Call by Re - the .. OF epy, S0
3R organize > s‘s‘;actncntor&;r‘" The models require only (possibly self-referent) ncuonu ors ¢ S ong,
e e e e D R L e T
-.':rc.EH Nox:-'m:l‘xn styl I:,nx try to d:;r\i‘ transfomations' b = “) Use b s View or -
yerious ‘; ‘;imnctc hzlf:'mf‘“ $ cuznu:p“row\' : Tenpol‘a °”1niz
n
‘;si‘:-:\ss o 11:\“\8 Lo °{:‘:\; a npla‘: Some of these models, such as those for GO TO (2) u"‘iform Y laca“
‘uﬂ“ facing ‘;; y, we will :‘;ﬂ_ accu““;‘ known, and appear in the work of Landin, Reyne Pl‘o‘_-ed Nnep o
calcu XF‘m“ in acl-‘spn[on-rac ive COM gscape expressions, fluid variables, and call woulq Uraq;
SCHEME, :nf implementing new. This paper is partly tutorial in intent (3 amp, be exp n
‘“',:::- 14ke LISP. together for purposes of context. caly ;'Cdlcu;c“d for 4 a d Abet d
A - Us-¢p Haro elson an
he A B3y th Nane °°l‘et1
" cn done a% EUC d e s 8te,
¢ descrives eSSl of Technolel The poSigneq <OWpile ine Y Gerald Jay Sussman
This e orssachu ett! 1:‘r‘! arch {pD:f‘“‘s Phj ne‘:e“sd speciil e Cog, i lie S
of ‘“’ic 31 intelligence o caen This report describes research done at the a losg ry ar ly @ ag with Julie Sussman
i“‘*f.c“ Agency ‘;fs C-0643 of the Massachusetts Institute of Teshnolc S a tes are di ‘Ct9r1
P;?\cra NOOO1 artificial intelligence research is provi: 1"9 0 SCUSsed
¢ Projects Agency of the Department of Defe ‘waol_ Ung for
contract N00014-75-C-0643. ds ; th

The Next 700 Programming Languages

P. J. Landin
Univac Division of Sperry Rand Corp., New York, New York

“. .. today ... 1,700 special programming languages used to ‘com-
municate’ in over 700 application areas.”’—Computer Software Issues,
an American Mathergatical Association Prospectus, July 1965,

A family of unimplemented computing languages
scribed that is intended to span differences of applicatio
by a unified framework. This framework dictates the
ckout the uses of user-coined names, and the conven
about characterizing functional relationships. Within this fra
work the design of a specific language splits into two indé
pendent parts. One is the choice of written appearances o
programs (or more generally, their physical representation).
The o:her is the choice of the abstract entities (such as numbers,
character-strings, lists of them, functional relations among
them) that can be referred to in the language.

subs:

can be mé
important prop
expressions easy to

1. Introduction

Most programming langu:ly
expressing things in terms of oth§
basic set of given things. The Iswim G
Mean) system is a byprod
these tava

languag
problem orients

Iswim is an attentpy
describing things in terms™o
problem-oriented by apprg
So it is not a languagg
of which each mea
primitives. Th
is needed

Is

In praclice, Uhis rre—
more than one implementation, and if the dialects ard
disciplined, they might with luck be characterize

Presented at an ACM Programming Languages and Prag
Conference, San Dimas, California, August 1965.

1 There is no more use or mention of X in this paper—cognos
will nevertheless sense an undercurrent. A not inappropriate
would have been “Church without lambda.”

Volume 9 / Number 3 / March, 1966

Cr

.ences in the set of things provided by the library ¢

stem. Perhaps had Arcor G0 been launcly
of proclaimed as a language, it W,
ess relevant criticisms

M Wi

Notable:
~25 years before calcification of
PL families

Another 10 years for data
description languages?

+a)
i4-1)
/(v41)
ere f(x) = ax* + bz + ¢,
u/(ut1),
v/(v+1))
where ¢(f, p, @) = [(p+2q, 2p—1q)

Communications of the ACM

lext 70" rata
» 7 _aages

Why return to PADS?

This paper: high-level calculus (previous: specific tool in the pipeline)
Data processing in KDD pipeline is still manual - still an important problem!

« Relatfion to course projects

Challenge: PADS tools hard for non-experts to use
« Papers are not for a data science audience

« ..."data science” not coined for another two years

