
CS 295B/CS 395B
Systems for Knowledge 
Discovery

Potpourri



Done with this part of the course

DiscoverCollect Clean Transform

This week:

• Return to PADS in the context of KDD

• Cross current: randomness + fuzz testing



Today
• Start with fuzz testing paper

• Testing: not previously discussed in class

• PADS redux (bigger context): may not finish discussion today

• Some new notation

• Try to read at the high level, understand why things are formalized

• What the formalization is doing/why it matters

• Don’t worry about understanding how it works

• Consider: how is the paper different from the previous PADS paper?



Context: Seed Selection for Successful Fuzzing
Theme thus far: 

• Using systems for knowledge discovery

• Many systems have nice properties, e.g.,

• formal languages that are “correct by construction”

• tools that automate manual processes

• tools with statistical guarantees

All these properties are 
over static programs



Verification
“Does the software do what we built it to do?” 

Note: “software,” not “program” – could be over a whole framework!

Time: when we run the program

Static 
Analysis

Dynamic
Analysis Testing

Before During After?

Draw diagram on board

Spoiler: can test at 
many points 

Techniques are 
orthogonal



Beizer’s Levels of Software Testing
Level 0 – No difference between testing and debugging

Level 1 – The purpose of testing is to show correctness

Level 2 – The purpose of testing is to show that the software does not work

Level 3 – The purpose of testing is not to prove anything specific, but to reduce 
the risk of using the software

Level 4 – Testing is a mental discipline that helps all IT professionals develop 
higher-quality software

(from Ammann & Offutt’s Introduction to Software Testing, 2nd edition)



Ammann & Offut’s Testing Levels

Acceptance – w.r.t. requirements or users’ needs

System – w.r.t. architectural design and overall behavior

Integration – w.r.t. subsystem design

Module – w.r.t. detailed design

Unit – w.r.t. implementation

(from Ammann & Offutt’s Introduction to Software Testing, 2nd edition)
Function or method

Class, file, module, etc.
(independent logical component)

Program



Ammann & Offut’s Testing Levels

Acceptance – w.r.t. requirements or users’ needs

System – w.r.t. architectural design and overall behavior

Integration – w.r.t. subsystem design

Module – w.r.t. detailed design

Unit – w.r.t. implementation

(from Ammann & Offutt’s Introduction to Software Testing, 2nd edition)

Framework
(temporal component)

Human component
(requires requirements, notion of 

client)



Ammann & Offut’s Testing Levels

Acceptance – w.r.t. requirements or users’ needs

System – w.r.t. architectural design and overall behavior

Integration – w.r.t. subsystem design

Module – w.r.t. detailed design

Unit – w.r.t. implementation

(from Ammann & Offutt’s Introduction to Software Testing, 2nd edition)

Many testing approaches

Today: focus on fuzzing

Applied to the familiar levels



Background: Test suite generation
“Inputs” can mean many things:

• Inputs to or parameters of to a function

• Numbers, strings, structs, instances of other abstract data types, etc.

• Not very complex, can easily reason over whole domain or equivalence classes

Worst case: Cartesian 
product of domain 



Aside: the simplicity is a lie

How you generate inputs matters

Think: testing image processing over 512x512 pixel RGBA images

• Many images will be nonsense

• i.e., only a small subset of inputs is actually meaningful

This is a huge problem in machine learning



Background: Test suite generation
“Inputs” can mean many things:

• Inputs to or parameters of to a function

• Numbers, strings, structs, instances of other abstract data types, etc.

• Not very complex, can easily reason over whole domain or equivalence classes

• Also: whole programs

• Think: testing a compiler

• Higher testing levels, more complex inputs (+ larger input space)
Worst case: 

exponential in domains 
of each subcomponent



Background: fuzzing

Basic concept: generate random inputs to 

some part of the program

Can partition research depending on where:

Black-box – one point of eligible input

White-box – path-based, given knowledge of 

program structure 

Grey-box – instrumentation-based, given 

access to program points 



Background: fuzzing

Basic concept: generate random inputs to 

some part of the program

(Classically, based on what you have):

Black-box – one point of eligible input

White-box – path-based, given knowledge of 

program structure 

Grey-box – instrumentation-based, given 

access to program points 



Background: fuzzing

Basic concept: generate random inputs to 

some part of the program

(Classically, based on what you have):

Black-box – no code access, execute only

White-box – path-based, given knowledge of 

program structure 

Grey-box – instrumentation-based, given 

access to program points 



Background: fuzzing

Basic concept: generate random inputs to 

some part of the program

(Classically, based on what you have):

Black-box – no code access, execute only

White-box – access to complete source code

Grey-box – instrumentation-based, given 

access to program points 



Background: fuzzing

Basic concept: generate random inputs to 

some part of the program

(Classically, based on what you have):

Black-box – no code access, execute only

White-box – access to complete source code

Grey-box – partial access to code (e.g., 

compiled code or binaries)



Example: Reinforcement 
Learning Environments
Task: test whether an agent has learned to 

play PacMan

• Black box – just interact via controller

• Grey box – Arcade Learning Environment 

(ALE)

• White box -- Toybox



Mutation vs. Generation
Two major ways to generate inputs:

Local: mutation 

• Start with a representative program

• Make a random change in a systematic way

• (seen recently in PlanAlyzer paper)

Global: generation

• Use specification (e.g., BNF, protocol, etc.) to 
randomly generate

• Often uses model-based approaches



So Random
Cannot take randomness for granted

• Recurring problem in computing

• About uniformity, not true randomness:

• Want: uniform random selection over some domain

• Have: the ability to draw from some function of that domain

• Need: a better understanding of the mapping

NOT about 
cryptographically 

secure RNGs 
(different problem)



Examples
Mostly see this in criticism of benchmarks:

• HPC – SPEC benchmark (SIGMETRICS1998)

• Reinforcement learning – ALE (NeurIPS 2018)

• Computer Vision – CIFAR-10 & ImageNet (CoRR 2019)

• Software Testing – seed selection (ISSTA 2021)

Q: Why does this keep happening?

A: Lifecycle of research



Food for thought
• Connections between software testing and experimentation

• Software testing as knowledge discovery for software?

• Is this test case an edge case or a representative of a larger class?

• Connections to models (simplified views of the world)

• Connections to machine learning

• Connections to causality

• Methodology of testing vs. testing of methodology vs. testing as methodology

• Role of randomness



Context: Next 700 Data 
Description Languages

Published in CACM in 1966

At the time:

• COBOL

• FORTRAN

• LISP

• ALGOL

• (notable: C not yet invented!)



Context: Next 700 Data 
Description Languages

Published in CACM in 1966

At the time:

• COBOL

• FORTRAN

• LISP

• ALGOL

• (notable: C not yet invented!)

“…today …1,700 special programming 
languages used to ‘communicate’  in 

over 700 application areas.” 
Computer Software Issues, an American Mathematical

Association Prospectus, July 1965



Published in CACM in 1966

At the time:

• COBOL

• FORTRAN

• LISP

• ALGOL

• (notable: C not yet invented!)

Context: Next 700 Data 
Description Languages“Most programming languages are 

partly a way of expressing things in 
terms of other things and partly a 

basic set of given things.”



Published in CACM in 1966

At the time:

• COBOL

• FORTRAN

• LISP

• ALGOL

• (notable: C not yet invented!)

Languages differ in:

• “application area”

• “phase of computer use”

• physical appearance

• logical structure

Context: Next 700 Data 
Description Languages



Published in CACM in 1966

At the time:

• COBOL

• FORTRAN

• LISP

• ALGOL

• (notable: C not yet invented!)

Languages differ in:

• “application area”

• “phase of computer use”

• physical appearance

• logical structure

Context: Next 700 Data 
Description Languages
• business programming 

• then: COBOL
• now: COBOL spreadsheets

• mathematical computing 
• then: FORTRAN 
• now: FORTRAN via Numpy

• algorithmic computing 
• then: ALGOL
• now: general purpose lang. of your

choice



Published in CACM in 1966

At the time:

• COBOL

• FORTRAN

• LISP

• ALGOL

• (notable: C not yet invented!)

Languages differ in:

• “application area”

• “phase of computer use”

• physical appearance

• logical structure

Context: Next 700 Data 
Description Languages

”high-level programming, program 
assembly, job scheduling, etc.”

Today: would separate into end-user 
programming vs. intermediate or internal 
representation 



Published in CACM in 1966

At the time:

• COBOL

• FORTRAN

• LISP

• ALGOL

• (notable: C not yet invented!)

Languages differ in:

• “application area”

• “phase of computer use”

• physical appearance

• logical structure

Context: Next 700 Data 
Description Languages

Still true today!

Physical appearance: syntax

Logical structure: evaluation order
(arguments, compiler passes, etc.)



Context: Next 700 Data 
Description Languages

Broader context:

• Already have robust theory of computability 

• lambda calculus 

• Turing machines 

• von Neumann machines

• Attempt to refine understanding 

• Which things should be primitives?

• What makes a language usable?

• What constructs are most efficient?



Interlude: Lambda Papers



Context: Next 700 Data 
Description Languages

Published in CACM in 1966

At the time:

• COBOL

• FORTRAN

• LISP

• ALGOL

• (notable: C not yet invented!)

Notable: 
~25 years before calcification of

PL families

Another 10 years for data
description languages?



Why return to PADS?
This paper: high-level calculus (previous: specific tool in the pipeline)

Data processing in KDD pipeline is still manual – still an important problem!

• Relation to course projects

Challenge: PADS tools hard for non-experts to use

• Papers are not for a data science audience

• …“data science” not coined for another two years


