Graduate Students: Project Reminder

Midpoint due is on Nov. 15 (< 3 weeks from now)
Midpoint presentations on Mon, Nov. 15.
Guidelines will be released this weekend

Make progress every day.

Keep a notebook & write as you go, so that you are not writing b

the report and making the slides af the last minufe.
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Demographics of AMT

'~ The University of Vermont




Topics for today

Why should we care about the demographics of AMT in the first place?
What are the demographics of AMTe

Context for Monday's reading.



Why should we care?




What do we mean by demographics?

« Features of crowd workers
« Age, Ethnicity, Gender
* Mother tongue

« Employment status



What do we mean by demographics?

 Features of crowd workers

- Age, Ethnicity, Gender Obvious why we
. Mother tongue should care

« Employment status



What do we mean by demographics?

 Features of crowd workers

* Age, Efhnicity, Gender Less obvious why we
. Mother tongue should care

« Employment status
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Abstract

Recent studies demonstrate that machine
learning algorithms can discriminate based
on classes like race and gender. In this
work, we present an approach to evaluate
bias present in automated facial analysis al-
gorithms and datasets with respect to phe-
notypic subgroups. Using the dermatolo-
gist approved Fitzpatrick Skin Type clas-
sification system, we characterize the gen-
der and skin type distribution of two facial
analysis benchmarks, IJB-A and Adience.
We find that these datasets are overwhelm-
ingly composed of lighter-skinned subjects
(79.6% for 1JB-A and 86.2% for Adience)
and introduce a new facial analysis dataset
which is balanced by gender and skin type.
We evaluate 3 commercial gender clas-
sification systems using our dataset and
show that darker-skinned females are the
most misclassified group (with error rates
of up to 34.7%). The maximum error rate
for lighter-skinned males is 0.8%. T

substantial disparities in the accuracy

s _and lighter males in g
equire urgent

who is hired, fired, granted a loan, or how long
an individual spends in prison, decisions that
have traditionally been performed by humans are
rapidly made by algorithms (O’Neil, 2017; Citron
and Pasquale, 2014). Even Al-based technologies
that are not specifically trained to perform high-
stakes tasks (such as determining how long some-
one spends in prison) can be used in a pipeline
that performs such tasks. For example, while
face recognition software by itself should not be
trained to determine the fate of an individual in
the criminal justice system, it is very likely that
such software is used to identify suspects. Thus,
an error in the output of a face recognition algo-
rithm used as input for other tasks can have se-
rious consequences. For example, someone could
be wrongfully accused of a crime based on erro-
neous but confident misidentification of the per-
petrator from security videgdfootage analysis.

le recognition tools,
lgorithms that are
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Great findings
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Abstract

Recent studies demonstrate that machine
learning algorithms can discriminate based
on classes like race and gender. In this
work, we present an approach to evaluate
bias present in automated facial analysis al-
gorithms and datasets with respect to phe-
notypic subgroups. Using the dermatolo-
gist approved Fitzpatrick Skin Type clas-
sification system, we characterize the gen-
der and skin type distribution of two facial
analysis benchmarks, IJB-A and Adience.
‘We find that these datasets are overwhelm-
ingly composed of lighter-skinned subjects
(79.6% for 1JB-A and 86.2% for Adience)
and introduce a new facial analysis dataset
which is balanced by gender and skin type.
We evaluate 3 commercial gender clas-
sification systems using our dataset and
show that darker-skinned females are the
most misclassified group (with error rates
of up to 34.7%). The maximum error rate
for lighter-skinned males is 0.8%. T

substantial disparities in the accuracy

s _and lighter males in g
equire urgent

who is hired, fired, granted a loan, or how long
an individual spends in prison, decisions that
have traditionally been performed by humans are
rapidly made by algorithms (O’Neil, 2017; Citron
and Pasquale, 2014). Even Al-based technologies
that are not specifically trained to perform high-
stakes tasks (such as determining how long some-
one spends in prison) can be used in a pipeline
that performs such tasks. For example, while
face recognition software by itself should not be
trained to determine the fate of an individual in
the criminal justice system, it is very likely that
such software is used to identify suspects. Thus,
an error in the output of a face recognition algo-
rithm used as input for other tasks can have se-
rious consequences. For example, someone could
be wrongfully accused of a crime based on erro-
neous but confident misidentification of the per-
petrator from security videgdfootage analysis.

le recognition tools,
gorithms that are

Important for other

reasons, too!

ses this embedding.
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Findings: Poor performance for

women, abysmal performance for
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Abstract

Recent studies demonstrate that machine
learning algorithms can discriminate based
on classes like race and gender. In this
work, we present an approach to evaluate
bias present in automated facial analysis al-
gorithms and datasets with respect to phe-
notypic subgroups. Using the dermatolo-
gist approved Fitzpatrick Skin Type clas-
sification system, we characterize the gen-
der and skin type distribution of two facial
analysis benchmarks, [JB-A and Adience.
We find that these datasets are overwhelm-
ingly composed of lighter-skinned subjects
(79.6% for 1JB-A and 86.2% for Adience)
and introduce a new facial analysis dataset
which is balanced by gender and skin type.
We evaluate 3 commercial gender clas-
sification systems using our dataset and
show that darker-skinned females are the
most misclassified group (with error rates
of up to 34.7%). The maximum error rate
for lighter-skinned males is 0.8%. The
substantial disparities in the accuracy of
classifying darker females, lighter females,
darker males, and lighter males in gender
classification systems require urgent atten-
tion if commercial companies are to build
genuinely fair, transparent and accountable
facial analysis algorithms.

Keywords: Computer Vision, Algorith-
mic Audit, Gender Classification

1. Introduction

Artificial Intelligence (Al) is rapidly infiltrating
every aspect of society. From helping determine

* Download our gender and skin type balanced PPB
dataset at gendershades.org

© 2018 J. Buolamwini & T. Gebru.

who is hired, fired, granted a loan, or how long
an individual spends in prison, decisions that
have traditionally been performed by humans are
rapidly made by algorithms (O’Neil, 2017; Citron
and Pasquale, 2014). Even Al-based technologies
that are not specifically trained to perform high-
stakes tasks (such as determining how long some-
one spends in prison) can be used in a pipeline
that performs such tasks. For example, while
face recognition software by itself should not be
trained to determine the fate of an individual in
the criminal justice system, it is very likely that
such software is used to identify suspects. Thus,
an error in the output of a face recognition algo-
rithm used as input for other tasks can have se-
rious consequences. For example, someone could
be wrongfully accused of a crime based on erro-
neous but confident misidentification of the per-
petrator from security video footage analysis.

Many Al systems, e.g. face recognition tools,
rely on machine learning algorithms that are
trained with labeled data. It has recently
been shown that algorithms trained with biased
data have resulted in algorithmic discrimination
(Bolukbasi et al., 2016; Caliskan et al., 2017).
Bolukbasi et al. even showed that the popular
word embedding space, Word2Vec, encodes soci-
etal gender biases. The authors used Word2Vec
to train an analogy generator that fills in miss-
ing words in analogies. The analogy man is to
computer programmer as woman is to “X” was
completed with “homemaker”, conforming to the
stereotype that programming is associated with
men and homemaking with women. The biases
in Word2Vec are thus likely to be propagated
throughout any system that uses this embedding,.

Paper idea: empirical analysis of
gender classification for computer
vision

Findings: Poor performance for

women, abysmal performance for

dark-skinned women

* Prior work in NLP on bias
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Recent studies demonstrate that machine
learning algorithms can discriminate based
on classes like race and gender. In this
work, we present an approach to evaluate
bias present in automated facial analysis al-
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sification system, we characterize the gen-
der and skin type distribution of two facial
analysis benchmarks, [JB-A and Adience.
We find that these datasets are overwhelm-
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We evaluate 3 commercial gender clas-
sification systems using our dataset and
show that darker-skinned females are the
most misclassified group (with error rates
of up to 34.7%). The maximum error rate
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classification systems require urgent atten-
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1. Introduction

Artificial Intelligence (Al) is rapidly infiltrating
every aspect of society. From helping determine

* Download our gender and skin type balanced PPB
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who is hired, fired, granted a loan, or how long
an individual spends in prison, decisions that
have traditionally been performed by humans are
rapidly made by algorithms (O’Neil, 2017; Citron
and Pasquale, 2014). Even Al-based technologies
that are not specifically trained to perform high-
stakes tasks (such as determining how long some-
one spends in prison) can be used in a pipeline
that performs such tasks. For example, while
face recognition software by itself should not be
trained to determine the fate of an individual in
the criminal justice system, it is very likely that
such software is used to identify suspects. Thus,
an error in the output of a face recognition algo-
rithm used as input for other tasks can have se-
rious consequences. For example, someone could
be wrongfully accused of a crime based on erro-
neous but confident misidentification of the per-
petrator from security video footage analysis.

Many Al systems, e.g. face recognition tools,
rely on machine learning algorithms that are
trained with labeled data. It has recently
been shown that algorithms trained with biased
data have resulted in algorithmic discrimination
(Bolukbasi et al., 2016; Caliskan et al., 2017).
Bolukbasi et al. even showed that the popular
word embedding space, Word2Vec, encodes soci-
etal gender biases. The authors used Word2Vec
to train an analogy generator that fills in miss-
ing words in analogies. The analogy man is to
computer programmer as woman is to “X” was
completed with “homemaker”, conforming to the
stereotype that programming is associated with
men and homemaking with women. The biases
in Word2Vec are thus likely to be propagated
throughout any system that uses this embedding,.

Paper idea: empirical analysis of
gender classification for computer
vision

Findings: Poor performance for

women, abysmal performance for

dark-skinned women
* Prior work in NLP on bias

* This work started discourse on

bias in variable constfruction
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Recent studies demonstrate that machine
learning algorithms can discriminate based
on classes like race and gender. In this
work, we present an approach to evaluate
bias present in automated facial analysis al-
gorithms and datasets with respect to phe-
notypic subgroups. Using the dermatolo-
gist approved Fitzpatrick Skin Type clas-
sification system, we characterize the gen-
der and skin type distribution of two facial
analysis benchmarks, IJB-A and Adience.
We find that these datasets are overwhelm-
ingly composed of lighter-skinned subjects
(79.6% for 1JB-A and 86.2% for Adience)
and introduce a new facial analysis dataset
which is balanced by gender and skin type.
We evaluate 3 commercial gender clas-
sification systems using our dataset and
show that darker-skinned females are the
most misclassified group (with error rates
of up to 34.7%). The maximum error rate
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1. Introduction

Artificial Intelligence (AI) is rapidly infiltrating
every aspect of society. From helping determine

* Download our gender and skin type balanced PPB
dataset at gendershades.org
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who is hired, fired, granted a loan, or how long
an individual spends in prison, decisions that
have traditionally been performed by humans are
rapidly made by algorithms (O’Neil, 2017; Citron
and Pasquale, 2014). Even Al-based technologies
that are not specifically trained to perform high-
stakes tasks (such as determining how long some-
one spends in prison) can be used in a pipeline
that performs such tasks. For example, while
face recognition software by itself should not be
trained to determine the fate of an individual in
the criminal justice system, it is very likely that
such software is used to identify suspects. Thus,
an error in the output of a face recognition algo-
rithm used as input for other tasks can have se-
rious consequences. For example, someone could
be wrongfully accused of a crime based on erro-
neous but confident misidentification of the per-
petrator from security video footage analysis.

Many Al systems, e.g. face recognition tools,
rely on machine learning algorithms that are
trained with labeled data. It has recently
been shown that algorithms trained with biased
data have resulted in algorithmic discrimination
(Bolukbasi et al., 2016; Caliskan et al., 2017).
Bolukbasi et al. even showed that the popular
word embedding space, Word2Vec, encodes soci-
etal gender biases. The authors used Word2Vec
to train an analogy generator that fills in miss-
ing words in analogies. The analogy man is to
computer programmer as woman is to “X” was
completed with “homemaker”, conforming to the
stereotype that programming is associated with
men and homemaking with women. The biases
in Word2Vec are thus likely to be propagated
throughout any system that uses this embedding.

Classic Causal
Assumption

data
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Recent studies demonstrate that machine
learning algorithms can discriminate based
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work, we present an approach to evaluate
bias present in automated facial analysis al-
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tion if commercial companies are to build
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facial analysis algorithms.
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1. Introduction

Artificial Intelligence (AI) is rapidly infiltrating
every aspect of society. From helping determine

* Download our gender and skin type balanced PPB
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who is hired, fired, granted a loan, or how long
an individual spends in prison, decisions that
have traditionally been performed by humans are
rapidly made by algorithms (O’Neil, 2017; Citron
and Pasquale, 2014). Even Al-based technologies
that are not specifically trained to perform high-
stakes tasks (such as determining how long some-
one spends in prison) can be used in a pipeline
that performs such tasks. For example, while
face recognition software by itself should not be
trained to determine the fate of an individual in
the criminal justice system, it is very likely that
such software is used to identify suspects. Thus,
an error in the output of a face recognition algo-
rithm used as input for other tasks can have se-
rious consequences. For example, someone could
be wrongfully accused of a crime based on erro-
neous but confident misidentification of the per-
petrator from security video footage analysis.

Many Al systems, e.g. face recognition tools,
rely on machine learning algorithms that are
trained with labeled data. It has recently
been shown that algorithms trained with biased
data have resulted in algorithmic discrimination
(Bolukbasi et al., 2016; Caliskan et al., 2017).
Bolukbasi et al. even showed that the popular
word embedding space, Word2Vec, encodes soci-
etal gender biases. The authors used Word2Vec
to train an analogy generator that fills in miss-
ing words in analogies. The analogy man is to
computer programmer as woman is to “X” was
completed with “homemaker”, conforming to the
stereotype that programming is associated with
men and homemaking with women. The biases
in Word2Vec are thus likely to be propagated
throughout any system that uses this embedding.

New
Causal Assumption

data
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who is hired, fired, granted a loan, or how long
an individual spends in prison, decisions that
have traditionally been performed by humans are
rapidly made by algorithms (O’Neil, 2017; Citron
and Pasquale, 2014). Even Al-based technologies
that are not specifically trained to perform high-
stakes tasks (such as determining how long some-
one spends in prison) can be used in a pipeline
that performs such tasks. For example, while
face recognition software by itself should not be
trained to determine the fate of an individual in
the criminal justice system, it is very likely that
such software is used to identify suspects. Thus,
an error in the output of a face recognition algo-
rithm used as input for other tasks can have se-
rious consequences. For example, someone could
be wrongfully accused of a crime based on erro-
neous but confident misidentification of the per-
petrator from security video footage analysis.

Many Al systems, e.g. face recognition tools,
rely on machine learning algorithms that are
trained with labeled data. It has recently
been shown that algorithms trained with biased
data have resulted in algorithmic discrimination
(Bolukbasi et al., 2016; Caliskan et al., 2017).
Bolukbasi et al. even showed that the popular
word embedding space, Word2Vec, encodes soci-
etal gender biases. The authors used Word2Vec
to train an analogy generator that fills in miss-
ing words in analogies. The analogy man is to
computer programmer as woman is to “X” was
completed with “homemaker”, conforming to the
stereotype that programming is associated with
men and homemaking with women. The biases
in Word2Vec are thus likely to be propagated
throughout any system that uses this embedding.

New
Causal Assumption
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Why does this matter?




What are the demographics?




Turkers over time

AMT opened: 2005

A lot has changed in 15 years

Many early demographic studies: 2010-2015




Myth: Turkers are anonymous

We studied how well the privacy attitudes of MTurk workers mirror the privacy attitudes of the larger user
population. We report results from an MTurk survey of attitudes about managing one’s personal
information online and policy preferences about anonymity. We compare these
attitudes with those of a representative U.S. adult sample drawn from a separate survey a few months

earlier. MTurk respondents were younger and better educated, and more likely to use social
media than the representative US adult sample. Although they reported a similar amount of personal

information online,

, were more likely to do so, had more privacy concerns than the larger U.S. public.

Our analyses show that these
findings hold even when controlling for age, education, gender, and social media use. Our findings suggest
that privacy studies using MTurk need to account for differences between MTurk samples and the general
population.



Talk by Sid Suri (computer

scientist @ Microsoft Research)

Collaboration with work Mary
Gray (ethnographer @

Microsoft Research)

Crowdsourcing, Big Data, and
Social Media in the Behavioral
Sciences: Applications, Methods,
and Theory

Crowdwork'’s Invisible Engine: Valuing the
Organic Collaboration that Drives
Crowdsourcing Labor Markets

Siddharth Suri

UCI:.<

https://www.youtube.com/watch?v=rWSGFA-jme0




Talk by Sid Suri (computer

Crowdsourcing, Big Data, and

scientist @ Microsoft Research) Social Media in the Behavioral
Sciences: Applications, Methods,

Collaboration with work Mary and Theory

Gray (ethnographer @ e S e

Crowdsourcing Labor Markets

Microsoft Research) Siddharth Suri

« 80% US-based

« Indian Turkers highly collaborative https://www.youtube.com/watch?v=rWSGFA-jme0
 Most Turkers have other work

« High degree of heterogeneity in how system is used



Inside the world of a Mechanical Turker



Context for Monday’s readings




The story of my paper

Research doesn’'t happen the way it's written in papers
« Original idea: compiling Automan programs*
 List of big problems in crowdsourcing from Sid Suri

« Accepted on first submission

* Aside: How we think about labor has changed



Aside: Academic IRBs and AMT

Student question on Automan: was this granted IRB ay

Proposals to use AMT must be sub IRBs are NOT
ethics review

However, de-identified crowdwork
boards

(SurveyMan ran with a consent form + my co



How do we learn about Turkers

Tough nut to crack...

Idea: Use machine learning and multiple data sefs to deduce thg

identities and demographic information from their A
JK/LOL

Just f*cking ask them. Option A: survey
Option B: interview



Variability in Methodological Training

Important to reflect on research cultures

Systems building Social science
* security « ethnography
« threat model: adversarial behavior  thread model: measurement error

« assumption: start from a place of no frust « assumption: trust is easy to lose




