CS 295B/CS 395B
Systems for Knowledge
Discovery

Lecture 4: SQL + CGMs

'~ The University of Vermont

Topics

Data Frames vs. Databases
Structured Query Language (SQL)
Database Schemata

Database performance

Causal Reasoning

Dataframes: Pandas, R

DataFrame

row

column

@ Jupyter tutorial Last Checkpoint: 3 minutes ago (autosaved)

Fle Edit View Inset Cell Kemel Widgets Help Trusted | Python3 O
B o+ 2 @B 4+ % MHRin B C M Code s e

PyCon 2018: Using pandas for Better (and Worse) Data
Science
GitHub: https://github,.com/justmarkham/pycon-2018-tutorial

In [1): import matplotlib.pyplot as plt
import pandas as pd
pd.__version__

Out[l]: '0.24.1'
Dataset: Stanford Open Policing Project (video)

In [2): # ri stands for Rhode Island
ri = pd.read_csv('police.csv')

In (3): # what does each row represent?
ri.head()

out(3]:

stop date stop time county name driver gender driver age raw driver age driver race violation raw violation search
o 20050 ouss NaN M 1986.0 200 White Speeding Speeding
i - 0815 NN M 1966.0 400 White Speeding Speeding
g N e NaN M 1972.0 330 White Speeding Speeding
2005-02- Call for

3 - 17:15 NaN M 1986.0 19.0 White Santis DWer

PRINT 'After ROLLBACK example'’
DECLARE @FlagINT INT
SET @FlagInt = 1

PRINT @FlagInt ---- @FlagInt Value will be 1
BEGIN TRANSACTION
SET @FlagInt = 2

PRINT @FlagInt ---- @FlagInt Value will be 2
ROLLBACK TRANSACTION
PRINT @FlagiInt ---- @FlagInt Value will be ?

GO

PRINT 'After COMMIT example’
DECLARE @FlagINT INT
SET @Flagint =~ 1
PRINT @FlagInt ---- @FlagInt Value will be 1
BEGIN TRANSACTION
SET @FlagInt = 2

PRINT @FlagInt ---- @FlagInt Value will be 2
COMMIT TRANSACTION
PRINT @FlagiInt ---—- @FlagInt Value will be ?
GO
b Messages
After ROLLEBACK example
1
2

[z~ Value Remains the Same]
After COMMIT example

1

2 —

[z Value Remains the Same |

Exploratory Data Analysis (EDA) , Knowledge Discovery

(Tukey, Tufte, Wickham)
One-off Tutorials Robust large-scale processing
Reproducibility issues Heavy-weight

PRINT 'After ROLLBACK cx@lc'

Cells vs. Transactions i+

PRINT @FlagInt ---- @FlagInt Value will be 1
BEGIN TRANSACTION
SET @FlagInt = 2

. PRINT @FlagiInt --—— @FlagInt Value will be 2
PyCon 2018: Using pandas for Better (and Worse) Data ROLLBACK TRANSACTION
Science PRINT @FlagInt --—- @FlaglInt Value will be ?

GO
GitHub: https://github,.com/justmarkham/pycon-2018-tutorial

'Afrey O T 1"
In [1): import matplotlib.pyplot as plt FRINT 'After COMMIT example

import pandas as pd DECLARE @FlagINT INT
pd. _varaios SET @FlagInt = 1
Out[l]: '0.24.1' PRINT @FlagInt ---- @FlagInt Value will be 1
BEGIN TRANSACTION
Dataset: Stanford Open Policing Project (video) SET @FlagInt = 2)
PRINT @FlagInt ---- @FlagInt Value will be 2
In [2): # ri stands for Rhode Island COMMIT TRANSACTION
ri = pd.read _csv('police.csv’) PRINT @FlagInt ---—- @FlagInt Value will be ?
GO
In [3): # what does each row represent?
ri.head()
out[3): 13 Messages
stop date stop time county name driver gender driver age raw driver age driver race violation raw violati search Afe 20 p =
er LLEA example
o 050V ouss NaN M 1985.0 200 White Speedng Speeding 1
é
g: 08:15 NaN M 1966.0 400 White Speeding Speeding [z~ Value Remains the Same]
2005-01 After COMMIT example
2 S 2:; 2315 NaN M 1972.0 330 White Speeding Speeding 1
2005-02- Call for é
3 20 17:15 NaN M 1986.0 190 White Sarvice Other [2 Value Remalns me Same l

Data School

Databases: Transactions (all for one and one for all)

begin transaction

insert into credit_charges values (...)
delete from inventory where(...)

insert into shipping_requests values(...)

end fransaction

Queue up multiple statements that must be

executed together; like
(1) charging someone’s credit card
(2) removing from the inventory

(3) Shipping that item to them

Databases: SQL

Database tables a lot like dataframes, but

can be related, and updated safely.

Databases can be distributed, but on a
single system, famously promise to maintain

ACID properties.

Dropping some ACID Guarantees

Atomicity — transactions are applied as @ Isolation — if transactions are running
single unit in time concurrently, they don’t get in each other’s

. way.
Consistency — all rules of the database are

maintained across statements Durability — database is kept whole even in

the face of power or system failures

ACID deals with mutability, data frames

and KDD often deal with immutable copies
of the mutating database.

Two halves of SQL

Data Definition Language (DDL) Data Manipulation Language (DML)
create table courses if not exists (select instructor, title
instructor int, from courses

prefix text, where prefix = ‘CS’

number int,

and number 295

title text, ..

) ;

DML: the good parts

JOINS

« Extremely powerful (expressive)
« Extremely fast

* Many types, but WHERE is the easiest

COMEWITH ME
IF YOUWANT TO LIVE

/ Schema is important

Real World Schema: i2b2 database

visit_dimension

patient_dimension oic: | Erasiinter Niifn
Encounter Num
; 1 observation_fact 1 -
PK | Batient Num = Star-Schema: additional
PK . Start_Date
: Patient_Num
Birth_Date End_Date ;
Deah Date o0 sz _E_g%o_uﬂgr_g_um . Active_Status_CD tables describe central table.
Vital_Status_CD PK Q_O_G_e_p_t_g_rver) . Location_CD*
Age_Num* o | PK M__Q_gl t Da \ Many related tables working
CRBendeé_éiD PK | Modifier CD w0]| observer_dimension
ace_| PK | Instance_Num — fogether.
Ethnicity_CD* PK | Observer Path
End_Date
ValType CD Observer_CD
TVal_Char Name_Char
: 8 NVal_Num
concept_dimension Value_FIag cD -
PK n Path Observation_Blob modifier_dimension
00 PK | Modifier_Path
Concept_CD
Name_Char Modifier_CD
Name_Char

https://www.w3schools.

Joining Tables

To figure out the students in a particular course, we may have to join the course_enroll table
with the courses table.
select course enroll.student id

from courses

join course enroll on courses.id = course enroll.course

where courses.number = 295 and courses.prefix = ‘CS’

To then get the students’ emails, we would need to involve the student table.

Data warehousing / normalizing databases

Sometimes for KDD style applications we simplify the database, since it's not being edited.
Databases sometimes adhere to normal forms; there are different tradeoffs for:
- making queries fast e.qg., getting everything relevant into 1 table

- making it easy to add new data

https://en.wikipedia.org/wiki/Database normalization

https://en.wikipedia.org/wiki/Database_normalization

Embedded DSLs vs. standalone DSLs

« Pandas is arguably an embedded DSL

* You can write whatever Python you want, but if you limit yourself to pandas

operations they are much faster.

« SQLis a standalone DSL

* You can write SQL in separate files, and database APIs execute strings of SQL code

and provide results back in various forms

* Itis not uncommon to see a schema.sql file containing all the DDL for a database in

a project.

SQL outside of DBs (I): Spark / Arrow / Drill

Apache Spark (paper for Wednesday!) offers SQL execution across large datasets that

are maintained in-memory on a cluster

Formats in the Apache Arrow project are designed with the goal of SQL executing over

these files even if not fully loaded into memory.

https://drill.apache.org/docs/querying-parquet-files/

https://drill.apache.org/docs/querying-parquet-files/

SQL outside of DBs (II): C# LINQ

Embedded SQL DSL that supports all types of // Specify the data source.

collections/arrays/etc. int[] scores = new int[] { 97, 92, 81, 60 };
// Define the query expression.
IEnumerable<int> scoreQuery =

from score in scores

where score > 80

https://docs.microsoft.com/en- o e

us/dotnet/csharp/programming-

// Execute the query.

quide/concepts/ling/ foreach (int i in scoreQuery)
{

1

Console.Write(i + " ");

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/

Standard SQL vs. SQL in practice

ANS’ I Search here for anything sta
American National Standards Institute

« SQL standardization history quite interesting

The SQL Standard - 1SO/IEC 9075:2016 (ANSI *
« Different vendors have slightly different flavors X3.135) E
« SQlLite lacked an upsert operation (before 2018) Emai

* NULL values handled differently in some databases
* MySQL uses IF/IFNULL, Posgres uses CASE

o https://troels.arvin.dk/db/rdlbbms/

https://blog.ansi.org/2018/10/sql-standard-iso-iec-9075-2016-ansi-x3-135

https://troels.arvin.dk/db/rdbms/

SQL as a domain-specific language (DSL)

Syntax (what it looks like)

ALTER INDEX { index name | ALL }
ON <object>
{ REBUILD
[[BARTITION = ALL]
[WITH (<rebuild index option> [,...n])]
| [PARTITION = partition number
[WITH (<single_partition_rebuild index option>
[yeeen 1)
]
1

]
| DISABLE

| REORGANIZE
[PARTITION = partition number]
[WITH (LOB_COMPACTION = { ON | OFF }) 1]

| SET (<set_index option> [,...n])
}
[71
<object> ::=
{
[database name. [schema name] . | schema name.]

table or viev name

Semantics (how we assign meaning)

sQL:

SELECT name, phone
FROM Employees
WHERE phone = 1122;

Relational Algebra:

‘I{name,phone) T{phone=1122) (Employees)

Datalog:

q(N ame, Phone) :- Employees(N ame, Phone) A (Phone=1122)

« Two main traditions we care about:

« PO: Potential outcomes (Rubin

causal model)

« CGM: Causal graphical models

(Pearl causal model)

Potential Outcomes Example: A/B test

T={A, B}
Avg(Y | T=A) - Avg(Y | T=B)

Procedure:

1. Randomly split *units” into 2 groups
2. Assign one group A, one group B
3. Take some measurements of Y, let time pass

4. Compute average Y for units receiving A, average Y for units receiving B

Many (potential — pun intended) sources of complexit

Highlight three big challenges
1. Treatments may be complex
2. Interference (i.e., breaking the “stable unit treatment value assumption or SUTVA)

3. Observational data

Causal Graphical Models Background

Assume your data lives in a single database table
« Graph entails probability simplex

« Any joint distribution can be refactored via basic operations (e.g., def. of conditional

probability/chain rule/multiplication rule (these are all the same thing))

These factorizations all require the same amount of space

Use independences entailed by the graph to use less space, make it fractable

Causal Graphical Models Background

« |If you know the structure

Great! Simulatel

« If you don’t know the structure
Need to learn independencies

This is where most of the research is

Why are CGMs useful?

Used for simulating experiments
« Easy if we have the structure (just learn the parameters)

« Harder if we need to learn the structure

« An active area of research

How to simulate?

« do-operator

CGMs as a domain-specific language (DSL)

Syntax (what it looks like)

(Qualifications Prior

to College)

Q,

(Qualifications After

College)

Semantics (how we assign meaning)

>

Q,

C

(College Rating)

> S

P(Q1, @2, C, S) = P(Q1)P(C|Q1)P(Q2|C, Q1)P(S|C, Q2)

+ parameters

+ any functional form assumptions
+ do-calculus

Why do we care?

For higher level modeling to be useful, we need to consider practical implications.

Sometimes this means performance.
Sometimes this means measurable or verifiable assumptions.

Sometimes this means verifying the process.

Themes

Empirical study of performance

Formal methods (e.g., logic, formal
syntax and semantics) help ground

assumptions in reality, not introduce bias

Design for performance, discover

generalizable findings

