
CS 295B/CS 395B
Systems for Knowledge
Discovery

Lecture 4: SQL + CGMs

Topics

Data Frames vs. Databases

Structured Query Language (SQL)

Database Schemata

Database performance

Causal Reasoning

Dataframes: Pandas, R

Data School SQL Authority

Data School SQL Authority

Exploratory Data Analysis (EDA)
(Tukey, Tufte, Wickham)

One-off Tutorials

Reproducibility issues

Knowledge Discovery

Robust large-scale processing

Heavy-weight

Data School SQL Authority

Cells vs. Transactions

Databases: Transactions (all for one and one for all)

begin transaction

insert into credit_charges values (…)

delete from inventory where(…)

insert into shipping_requests values(…)

end transaction

Queue up multiple statements that must be

executed together; like

(1) charging someone’s credit card

(2) removing from the inventory

(3) Shipping that item to them

Databases: SQL

Database tables a lot like dataframes, but

can be related, and updated safely.

Databases can be distributed, but on a

single system, famously promise to maintain

ACID properties.

Dropping some ACID Guarantees

Atomicity – transactions are applied as a

single unit in time

Consistency – all rules of the database are

maintained across statements

Isolation – if transactions are running

concurrently, they don’t get in each other’s

way.

Durability – database is kept whole even in

the face of power or system failures

ACID deals with mutability; data frames
and KDD often deal with immutable copies

of the mutating database.

Two halves of SQL

Data Definition Language (DDL)

create table courses if not exists (

instructor int,

prefix text,

number int,

title text, …

);

Data Manipulation Language (DML)

select instructor, title

from courses

where prefix = ‘CS’

and number = 295

DML: the good parts

JOINS

• Extremely powerful (expressive)

• Extremely fast

• Many types, but WHERE is the easiest

Schema is important

Real World Schema: i2b2 database

Star-Schema: additional

tables describe central table.

Many related tables working

together.

Joining Tables

To figure out the students in a particular course, we may have to join the course_enroll table

with the courses table.

select course_enroll.student_id

from courses

join course_enroll on courses.id = course_enroll.course

where courses.number = 295 and courses.prefix = ‘CS’

To then get the students’ emails, we would need to involve the student table.

https://www.w3schools.com/sql/sql_join.asp

Data warehousing / normalizing databases

Sometimes for KDD style applications we simplify the database, since it’s not being edited.

Databases sometimes adhere to normal forms; there are different tradeoffs for:

- making queries fast e.g., getting everything relevant into 1 table

- making it easy to add new data

https://en.wikipedia.org/wiki/Database_normalization

https://en.wikipedia.org/wiki/Database_normalization

Embedded DSLs vs. standalone DSLs

• Pandas is arguably an embedded DSL

• You can write whatever Python you want, but if you limit yourself to pandas

operations they are much faster.

• SQL is a standalone DSL

• You can write SQL in separate files, and database APIs execute strings of SQL code

and provide results back in various forms

• It is not uncommon to see a schema.sql file containing all the DDL for a database in

a project.

SQL outside of DBs (I): Spark / Arrow / Drill

Apache Spark (paper for Wednesday!) offers SQL execution across large datasets that

are maintained in-memory on a cluster

Formats in the Apache Arrow project are designed with the goal of SQL executing over

these files even if not fully loaded into memory.

https://drill.apache.org/docs/querying-parquet-files/

https://drill.apache.org/docs/querying-parquet-files/

SQL outside of DBs (II): C# LINQ

Embedded SQL DSL that supports all types of

collections/arrays/etc.

https://docs.microsoft.com/en-

us/dotnet/csharp/programming-

guide/concepts/linq/

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/

Standard SQL vs. SQL in practice

• SQL standardization history quite interesting

• Different vendors have slightly different flavors

• SQLite lacked an upsert operation (before 2018)

• NULL values handled differently in some databases

• MySQL uses IF/IFNULL, Posgres uses CASE

• https://troels.arvin.dk/db/rdbms/

https://blog.ansi.org/2018/10/sql-standard-iso-iec-9075-2016-ansi-x3-135/

https://troels.arvin.dk/db/rdbms/

SQL as a domain-specific language (DSL)

Syntax (what it looks like) Semantics (how we assign meaning)

Causal Reasoning in CS:
Background

• Two main traditions we care about:

• PO: Potential outcomes (Rubin

causal model)

• CGM: Causal graphical models

(Pearl causal model)

Potential Outcomes Example: A/B test

T = {A, B}

Avg(Y | T=A) – Avg(Y | T=B)

Procedure:

1. Randomly split “units” into 2 groups

2. Assign one group A, one group B

3. Take some measurements of Y, let time pass

4. Compute average Y for units receiving A, average Y for units receiving B

Remind me to DO STUFF ON THE BOARD

Many (potential – pun intended) sources of complexity

Highlight three big challenges

1. Treatments may be complex

2. Interference (i.e., breaking the “stable unit treatment value assumption or SUTVA)

3. Observational data

Remind me to DO STUFF ON THE BOARD

Causal Graphical Models Background

Assume your data lives in a single database table

• Graph entails probability simplex

• Any joint distribution can be refactored via basic operations (e.g., def. of conditional

probability/chain rule/multiplication rule (these are all the same thing))

• These factorizations all require the same amount of space

• Use independences entailed by the graph to use less space, make it tractable

Remind me to DO STUFF ON THE BOARD

Causal Graphical Models Background

• If you know the structure

• Great! Simulate!

• If you don’t know the structure

• Need to learn independencies

• This is where most of the research is

Some of this framing I learned from Cosma Shalizi’s text, but that was
updated this year and I ran out of time looking for the older version.

Why are CGMs useful?

Used for simulating experiments

• Easy if we have the structure (just learn the parameters)

• Harder if we need to learn the structure

• An active area of research

How to simulate?

• do-operator

CGMs as a domain-specific language (DSL)

Syntax (what it looks like) Semantics (how we assign meaning)

P(Q1, Q2, C, S) = P(Q1)P(C|Q1)P(Q2|C, Q1)P(S|C, Q2)

+ parameters
+ any functional form assumptions
+ do-calculus

Why do we care?

For higher level modeling to be useful, we need to consider practical implications.

Sometimes this means performance.

Sometimes this means measurable or verifiable assumptions.

Sometimes this means verifying the process.

Themes

• Empirical study of performance

• Formal methods (e.g., logic, formal

syntax and semantics) help ground

assumptions in reality, not introduce bias

• Design for performance, discover

generalizable findings

