CS 295B/CS 395B
Systems for Knowledge
Discovery

Sound Data Collection

'~ The University of Vermont

Data collection
Correctness

Program Synthesis
Al-powered inference

Paper context

So far in this course....

Recall the diagram from day one:
CaRL

Spark SQ

Transform Discover

So far in this course....

Recall the diagram from day one:
CaRL

Spark SQ

Transform Discover

So far in this course....

Recall the diagram from day one:

Flumelava

Transform and Discover

So far in this course....

Recall the diagram from day one:

Indri

Collect and Discover

So far in this course....

Recall the diagram from day one:
PADS CaRL

FlashFill Spark SQ

Transform Discover

What is data collection?

ap

e t .
Absh-al:t
:] An A ho,. gy, Uree
Urce jo any semislluctlln,-
‘ I : l 3 : lr%ijolma i d SOurce fo, : i maSSi"e it
‘ o i ing frop, Comp, oS o .
: anoc daty Persjg, in fielg,
. a : y . sraA”g‘
LB C . :

.
le:
Xxamp
undant source e
Most ab ram,
i that ,, i
descry e ang Prog, the y
sc;f’;"’{ Sl"gg"age- Pc;es a fon:: sqecljﬁcaziof, in he hii :dh v;, @ an,
5 Us t 28y isa domaln 7 = .4 1
the - clanguage in Whicp, I' - w
% s P OgTa':mﬁ!sC Spec.

Cregy; s descr
‘ iptio,
o EPen ey 1 JePene & :
o Odyjg D,
ﬁdlxﬁmctionalfgzﬂlms for analysii e i linkeq Wftlzc g e
-Ilgon”lm, Shoy,;, 'S We aluggg , * 2nd transfonnati formg,. SUite of e liong oer: Ie
8 ino 2 10g j¢ Scajeg Iinead t-?p"fm")ance of, Oon, resulg n e th Y/ 8 ng Liby, a languparxages
5 Vin the Size f the trajy-. Tence ‘rallslatorm‘rw oge c d e i e;:r i
8 dag, flical 4y, }:s?sqluﬂy ngine (Femp;:;em"g 12008 ingy gnmers, crch
g pap, o0k ang Iy e, ol 200
U a sing, He""e, an j, ot 1 mple 3
Sle e, Uatjye descnf:ﬂ,m"' bemﬁ 9 a"l":‘
Foce May Useq

Problems: ing or audifing
sed for debugg
. U
. ically
I_ @) g g I ey oreg, Zm La’lguage_\-, Alg"”""ns i

ion, 49 th; Z:imip&m l""g"agEs 5

a " Eampy,, indum'o,, over jt i re[a,,-:" a oy, ppif0 o
conra,‘,, val, Elly :°’nm0n fo encol:::e,— d f 5. H
: ; ad p :

: ific
: N-SPeC
licatio
I-sfructured, app
are only semi :
I_ @) g S Sful gy o e is ?
abje, XMy naly, ‘ZS anq trans;;:nnat:::f:l:;:% nmllrce for Whicy :
. Ib i 7
; adjfy, avgjy. One of d‘;‘]’;;:;: Tibe an i’npgr::;:ks (oﬁ‘azz
i uay es Aa ‘. datg Source Useq o, AaT &7
Of cop ¥ SWitep

Transform

Working with ad hoc data sources

Most popular programming environment:
« Spreadsheet programs (e.g., Excel)
Problem:s:

« Spreadsheets typically mix data organization,

cleaning, and querying

« Spreadsheets only semi-structured, application-

specific

Clean Transform

SV
. POF o0 s =
e A Y e WO

+ Datacollection

o Correctness

* Program Synthesis

« Al-powered inference

* Paper context

Correctness of data collection and processing

Collection

« Correctness is statistical (usu. w.r.t. underlying population)
« Discussions later in the course

Transformation

« What kinds of guarantees can we make ahead of time?

Be on the lookout for correctness proofs

What are correctness proofs?

Algorithmic:

« Soundness

« Allreturned instances have property P (100% precision)

« Completeness

« Finds all instances of property P (100% recall)

What is completeness (in practice)?

When do we want it?

* Most algorithmic contexts

« Often elided

When might we not want it?

« Sometimes we just can’t have it!

« Sometimes returning everything is too much

What is soundness (in
practice)?

Example: Soundness in type systems

Type systems: a branch of PL

Examples of types:

« Primitives/base types: Booleans, characters/strings, numbers (integers, ratios, floats)
« Tagged unions

« Records

« Tuples

Parametric types (lists, maps, etc.)

Challenges in type systems

TwO sources:
1. Can make arbitrarily complex types due to parametric types

2. Can have arbitrarily complex expressions, each subexpressior

having a type

How do we establish soundness in type systems?

Type soundness established through 2 properties:
1. Progress (never get stuck)

2. Preservation (types obey the rules)

Recap: Recipe for lang + type system

Misconception: that we are “proving the language correct”
Truth: Some part of the language is decidable

1. Define your language

2. Encode property P in the type system

3. Write out typing rules

. Prove typing rules sound

Types of semantics

Typing is only meaningful in the context of syntax and semantics

Syntax

Previously: what it is Now: what it does
Tells you how to build up programs

Semantic

Previously: what it is Now: what it doe

Tells you how to evaluate down programs.

How to read denotational semantics

Do stuff on the board

—Datercolechen
oo enoss

* Program Synthesis

« Al-powered inference

* Paper context

ment W

‘“,esg'\o\\s
tive sent®

“

Long-desired goal of computer science (& Al)
» LISP: code is data
« Conftrast with code generation

» Genetic Programming (stochastic program

synthesis)

* A kind of evolutionary method

N e

\L=

(A

algorithms

ion +

ORY.COM
erator net

ldea: Apply principles from genetic

G E N E T I C algorithms to programs, not just

PROGRAMMING vectors of numbers.
_” What is it good for?

« Domains requiring structured output

ON THE

PROGRAMMING « Domains where you have very little

RPEICOMRUVERS knowledge a priori
- BY MEANS OF
NATURAL « Domains where you just need @

SILECTION solution

Warning!

The Bactra Review: Occasional and eclectic book reviews by Cosma Shalizi 132

A New Kind of Science

by Stephen Wolfram

Wolfram Media, 2002

A Rare Blend of Monster Raving Egomania and Utter Batshit Insanity

Attention conservation notice: Once, I was one of the authors of a paper on cellular automata. Lawyers for
Wolfram Research Inc. threatened to sue me, my co-authors and our employer, because one of our citations
referred to a certain mathematical proof, and they claimed the existence of this proof was a trade secret of
Wolfram Research. I am sorry to say that our employer knuckled under, and so did we, and we replaced that
version of the paper with another, without the offending citation. I think my judgments on Wolfram and his works
are accurate, but they're not disinterested.

With that out of the way: it is my considered, professional opinion that A New Kind of Science shows that
Wolfram has become a crank in the classic mold, which is a shame, since he's a really bright man, and once upon
a time did some good math, even if he has always been arrogant.

As is well-known (if only from his own publicity), Wolfram was a child prodigy in mathematics, who got his
Ph.D. in theoretical physics at a tender age, and then, in the early and mid-1980s, was part of a wave of renewed
interest in the subject of cellular automata. The constant reader of these reviews will recall that these are
mathematical systems which are supposed to be toy models of physics. Space consists of discrete cells arranged
in a regular lattice (like a chess-board, or a honeycomb), time advances in discrete ticks. At each time, each cell is
in one of a finite number of states, which it changes according to a preset rule, after examining the states of its
neighbors and its own state. A physicist would call a CA a fully-discretized classical field theory; a computer
scientist would say each cell is a finite-state transducer, and the whole system a parallel, distributed model of
computation. They were introduced by the great mathematician John von Neumann in the 1950s to settle the
question of whether a machine could reproduce itself (answer: yes), and have since found a productive niche in
modeling fluid mechanics, pattern formation, and many kinds of self-organizing system.

After the foundational work of von Neumann and co., there was a long fallow period in the study of CAs, when
publications slowed to a trickle, and people were more likely to think of themselves as studying the statistical
mechanics of spin systems, or the ergodic properties of interacting particle systems, than cellular automata as
such. The major exception was a popular CA invented by John Conway, the Game of Life, or just Life, which

Counter-example guided inductive synthesis (CEGIS)

© Q

GOAL: LEARN GENERATING PROGRAM USE FORMAL METHODS TO FIND
FROM INPUT-OUTPUT PAIRS

g The University of Vermont

Program Synthesis by Sketching
by

Armando Solar-Lezama

B.S. (Texas A&M University) 2003

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor in Philosophy
in
Engineering-Electrical Engineering and Computer Science

in the

GRADUATE DIVISION
of the
UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Rastislav Bodik, Chair
Sanjit Seshia
Leo Harrington

Fall 2008

CEGIS: Origins

« Al-powered inference

* Paper context

Al - PL

Both papers feature completely different techniques from Al
« PADS: Structure Discovery

» FlashFill: Version Space Algebras

Will see more from our presenters on Monday

* Paper context

PADS: Processing Arbitrary Data Streams

Kathleen Fisher Robert E. Gruber
AT&T Labs — Research AT&T Labs — Research
kfisher@research.att.com gruber@research.att.com
August 7, 2003

1 Introduction

Transactional data streams, such as sequences of stock-market buy/sell orders, credit-card purchase records, web server
entries, and electronic fund transfer orders, can be mined very profitably. As an example, researchers at AT&T have
built customer profiles from streams of call-detail records to significant financial effect [CP98, CP99, CFP*00].

Often such streams are high-volume: AT&T"s call-detail stream contains roughly 300 million calls per day requir-
ing approximately 7GBs of storage space. Typically, such stream data arrives “as is” in ad hoc formats with poor
documentation. In addition, the data frequently contains errors. The appropriate response to such errors is application-
specific. Some applications can simply discard unexpected or erroneous values and continue processing. For other
applications, however, errors in the data can be the most interesting part of the data.

Understanding a new data stream and producing a suitable parser are crucial first steps in any use of stream data.
Unfortunately, writing parsers for such data is a difficult task, both tedious and error-prone. It is complicated by lack
of documentation, convoluted encodings designed to save space, the need to handle errors robustly, and the need to
produce efficient code to cope with the scale of the stream. Often, the hard-won understanding of the data ends up
embedded in parsing code, making long-term maintenance difficult for the original writer and sharing the knowledge
with others nearly impossible.

The goal of the PADS project is to provide languages and tools for simplifying data stream analysis. We have a
preliminary design of a declarative data-description language, PADSL, expressive enough to describe the data feeds we
see at AT&T in practice, including ASCII, binary, EBCDIC, Cobol, and mixed data formats. From PADSL we generate
a tunable C library with functions for parsing, manipulating, and summarizing the data.

2 PADS language

Intuitively, a PADSL description specifies complete information about the physical layout and semantic constraints for
the associated data stream. Most type declarations in PADSL are analogous to type declarations in C. PADSL has an
extensible set of base types that specify how to read and verify atomic pieces of data such as ASCII 32-bit integers
(Pa_int32) and binary bytes (Pb_int8). Verification conditions for such base types include checking that the
resulting number fits in the indicated space, i.e., 16-bits for Pa_int16. PADSL has Pstructs, Punions, and
Parrays to describe record-like structures, alternatives, and sequences, respectively. Each of these types can have an
associated predicate that indicates whether a value calculated from the physical specification is indeed a legal value
for the type. For example, a predicate might require that two fields of a Pst ruct are related or that the elements of
a sequence are in increasing order. Programmers can specify such predicates using PADSL expressions or functions.
PADSL Ptypede£s can be used to define new types that add further constraints to existing types.

In addition, PADSL types can be parameterized by values. This mechanism serves both to reduce the number of
base types and to permit the format of later portions of the data to depend upon earlier portions. For example, the base
type Pa_uint32_FW (:3:) specifies an unsigned integer physically represented by exactly 3 ASCII characters,
while the type Pa_string (:” ’:) describes an ASCII string terminated by a space. Parameters can be used with
compound types to specify the size of an array or which branch of a union should be taken.

As an example, consider the common log format for Web server logs. A typical record looks like the following:

207.136.97.49 - - [15/0ct/1997:18:46:51 -0700] "GET /tk/p.txt HTTP/1.0" 200 30

Project active years: 2001—2010ish

- First paper: PADS: Processing Arbitrary
Data Streams

« Retrospective in 2011
« Haskell repo last updated in 2019
 Crepo last updated in 2015

XML, JSON, YAML, TOML

« These are all structured data
« Easier to just write something that outputs one of these formats

« History
+ XML - bloat
+ JSON —inefficient, hard to read
* YAML - user-friendly, ambiguous grammar

« TOML - current config fave

NN R R R R R R R
= O W 0N O U b WN

4
1
2 E
3 ;
4 ;
5 B
6 E
7 :
8 ;
9 ;
10 |
11 |

Automating String Processing in
Spreadsheets Using Input-Output Examples

Sumit Gulwani

Microsoft Research, Redmond, WA, USA
sumitg@microsoft.com

Abstract

We describe the design of a string programming/expression lan-
guage that supports restricted forms of regular expressions, condi-
tionals and loops. The language is expressive enough to represent
a wide variety of string manipulation tasks that end-users struggle
with. We describe an algorithm based on several novel concepts for
synthesizing a desired program in this language from input-output
examples. The synthesis algorithm is very efficient taking a fraction
of a second for various benchmark examples. The synthesis algo-
rithm is interactive and has several desirable features: it can rank
multiple solutions and has fast convergence, it can detect noise in
the user input, and it supports an active interaction model wherein
the user is prompted to provide outputs on inputs that may have
multiple computational interpretations.

The algorithm has been implemented as an interactive add-in for
Microsoft Excel spreadsheet system. The prototype tool has met the
golden test - it has synthesized part of itself, and has been used to
solve problems beyond author’s imagination.

Categories and Subject Descriptors D.1.2 [Programming Tech-
niques|: Automatic Programming; 1.2.2 [Artificial Intelligence]:
Program Synthesis

General Terms Algorithms, Human Factors

Keywords Program Synthesis, User Intent, Programming by Ex-
ample (PBE), Version Space Algebra, Spreadsheet Programming,
String Manipulation

1. Introduction

More than 500 million people worldwide use spreadsheets. These
business end-users have myriad diverse backgrounds and include
commodity traders, graphic designers, chemists, human resource
managers, finance pros, marketing managers, underwriters, com-
pliance officers, and even mailroom clerks — they are not profes-
sional programmers, but they need to create small, often one-off,
applications to support business functions [5].

Unfortunately, the state of art in spreadsheet programming is
far from satisfactory. Spreadsheet systems come with tons of fea-
tures, but end-users struggle to find the correct feature or succes-
sion of commands to use from a maze of features to accomplish

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PoPL’11, January 26-28, 2011, Austin, Texas, USA.

Copyright © 2011 ACM 978-1-4503-0490-0/11/01... $10.00

their task [9]. More significantly, programming is still required to
perform tedious and repetitive tasks such as transforming entities
like names/phone-numbers/dates from one format to another, data
cleansing, extracting data from several text files or web pages into
a single document, etc. Spreadsheet systems like Microsoft Excel
allow users to write macros using a rich inbuilt library of string and
numerical functions, or to write arbitrary scripts using a variety of
programming languages like Visual Basic, or .Net. Since end-users
are not proficient in programming, they find it too difficult to write
desired macros or scripts.

‘We have performed an extensive case study of spreadsheet help
forums and identified that string processing is one of the most
common class of programming problems that end-users struggle
with. This is not surprising given that languages like Perl, Awk,
Python came into existence to support string/text processing, and
that new languages like Java/C# provide a rich support for string
processing. During our study of help forums, we also carefully
studied how these users were describing the specification of the
desired program to the experts on the other side of the help forums.
It turns out that the most common form of specification was input-
output examples. Since input-output examples may lead to under-
specification, the interaction between the user and the expert often
involved a few rounds of communication (over multiple days).

‘We describe a program synthesis system that is capable of syn-
thesizing a wide range of string processing programs in spread-
sheets from input-output examples. The synthesizer aims to replace
the role of the forum expert, which not only removes a human from
the loop, but also enables users to solve their problems in a few
seconds as opposed to a few days. Our synthesis system, which
is deployment ready, has the following important usability proper-
ties.

e Fully Automated: We do not require non-sophisticated end-
users to provide annotations/hints of any form.

e Real Time: Our system takes less than 0.1 second on average
per interactive round.

e Easy Interaction: Programming by examples is an interactive
process where examples are added in each round to make the
specification more precise. Our system helps identify the inputs
for which the user should provide examples.

e Fast Convergence: Our system typically takes 1-4 rounds of
iteration for convergence in practice.

e Noise Handling: If the user makes a small mistake in mostly
correct specification, our system can still compute the likely
solution and report the likely mistake.

This paper makes the following contributions.

1. We describe a string programming/expression language that is
expressive enough to represent a wide variety of string manipu-
lation tasks found during an extensive study of Excel online help

Context: FlashFill

Where are they now?

Why did FlashFill take offe

Why don’t we use PADS?¢

Learning Programs: A Hierarchical Bayesian Approach

Percy Liang

PLIANG@CS.BERKELEY.EDU

Computer Science Division, University of California, Berkeley, CA 94720, USA

Michael 1. Jordan

JORDAN@CS.BERKELEY.EDU

Computer Science Division and Department of Statistics, University of California, Berkeley, CA 94720, USA

Dan Klein

KLEIN@QCS.BERKELEY.EDU

Computer Science Division, University of California, Berkeley, CA 94720, USA

Abstract

We are interested in learning programs for
multiple related tasks given only a few train-
ing examples per task. Since the program
for a single task is underdetermined by its
data, we introduce a nonparametric hierar-
chical Bayesian prior over programs which
shares statistical strength across multiple
tasks. The key challenge is to parametrize
this multi-task sharing. For this, we in-
troduce a new representation of programs
based on combinatory logic and provide an
MCMC algorithm that can perform safe pro-
gram transformations on this representation
to reveal shared inter-program substructures.

1. Introduction

A general focus in machine learning is the estimation
of functions from examples. Most of the literature fo-
cuses on real-valued functions, which have proven use-
ful in many classification and regression applications.
This paper explores the learning of a different but also
important class of functions—those specified most nat-
urally by computer programs.

To motivate this direction of exploration, consider pro-
gramming by demonstration (PBD) (Cypher, 1993).
In PBD, a human demonstrates a repetitive task in a
few contexts; the machine then learns to perform the
task in new contexts. An example we consider in this
paper is text editing (Lau et al., 2003). Suppose a user
wishes to italicize all occurrences of the word statistics.
If the user demonstrates italicizing two occurrences of

Appearing in Proceedings of the 27*" International Confer-
ence on Machine Learning, Haifa, Israel, 2010. Copyright
2010 by the author(s) /owner(s).

statistics, can we generalize to the others? The solu-
tion to this italicization task can be represented com-
pactly by a program: (1) move the cursor to the next
occurrence of statistics, (2) insert <i>, (3) move to the
end of the word, and (4) insert </i>.

From a learning perspective, the main difficulty with
PBD is that it is only reasonable to expect one or two
training examples from the user. Thus the program
is underdetermined by the data: Although the user
moved to the beginning of the word statistics, an alter-
nate predicate might be after a space. Clearly, some
sort of prior or complexity penalty over programs is
necessary to provide an inductive bias. For real-valued
functions, many penalties based on smoothness, norm,
and dimension have been studied in detail for decades.
For programs, what is a good measure of complexity
(prior) that facilitates learning?

We often want to perform many related tasks (e.g.,
in text editing, another task might be to italicize the
word logic). In this multi-task setting, it is natural to
define a hierarchical prior (a joint measure of complex-
ity) over multiple programs, which allows the sharing
of statistical strength through the joint prior.

The key conceptual question is how to allow sharing
between programs. Here, we can take inspiration from
good software engineering principles: Programs should
be structured modularly so as to enable code reuse.
However, it is difficult to implement this intuition since
programs typically have many internal dependencies;
therefore, transforming programs safely into a modu-
lar form for statistical sharing without disrupting the
program semantics requires care. Our solution is to
build on combinatory logic (Schonfinkel, 1924), a sim-
ple and elegant formalism for building complex pro-
grams via composition of simpler subprograms. Its
simplicity makes it conducive to probabilistic model-
ing.

