
CS 295B/CS 395B
Systems for Knowledge
Discovery

Sound Data Collection

Topics

• Data collection

• Correctness

• Program Synthesis

• AI-powered inference

• Paper context

So far in this course….

Recall the diagram from day one:

DiscoverCollect Clean Transform

CaRL

Spark SQL

Started with query languages over structured data

Then moved on to processing less-processed data

So far in this course….

Recall the diagram from day one:

DiscoverCollect Clean Transform

CaRL

Spark SQL

So far in this course….

Recall the diagram from day one:

DiscoverCollect Clean Transform and Discover

FlumeJava

So far in this course….

Recall the diagram from day one:

DiscoverClean Transform

Indri

Collect and Discover

So far in this course….

Recall the diagram from day one:

DiscoverCollect Clean Transform

CaRL

Spark SQL

PADS
FlashFill

What is data collection?

Typically think: active data collection

• Scraping information from the web

• Designing software for measuring phenomena

• Running surveys, collecting labels, etc.

There is a lot of passively collected data out here

Why “big data” is/was A Thing

Passive data collection

Most abundant source example:

• Logs from software systems

Problems:

• Logging typically used for debugging or auditing

• Logs are only semi-structured, application-specific

Transform

Working with ad hoc data sources

Most popular programming environment:

• Spreadsheet programs (e.g., Excel)

Problems:

• Spreadsheets typically mix data organization,

cleaning, and querying

• Spreadsheets only semi-structured, application-

specific
Clean Transform

Topics

• Data collection

• Correctness

• Program Synthesis

• AI-powered inference

• Paper context

Correctness of data collection and processing

Collection

• Correctness is statistical (usu. w.r.t. underlying population)

• Discussions later in the course

Transformation

• What kinds of guarantees can we make ahead of time?

• Be on the lookout for correctness proofs

What are correctness proofs?

Algorithmic:

• Soundness

• All returned instances have property P (100% precision)

• Completeness

• Finds all instances of property P (100% recall)

What is completeness (in practice)?
When do we want it?

• Most algorithmic contexts

• Often elided

When might we not want it?

• Sometimes we just can’t have it!

• Sometimes returning everything is too much

What is soundness (in
practice)?

Domain-specific

Something the researcher decides

• Do the papers provide soundness

theorems?

• If they do not, why not?

Example: Soundness in type systems

Type systems: a branch of PL

Examples of types:

• Primitives/base types: Booleans, characters/strings, numbers (integers, ratios, floats)

• Tagged unions

• Records

• Tuples

• Parametric types (lists, maps, etc.)

Challenges in type systems

Two sources:

1. Can make arbitrarily complex types due to parametric types

2. Can have arbitrarily complex expressions, each subexpression

having a type

How do we establish soundness in type systems?

Type soundness established through 2 properties:

1. Progress (never get stuck)

2. Preservation (types obey the rules)

Recap: Recipe for lang + type system

Misconception: that we are “proving the language correct”

Truth: Some part of the language is decidable

1. Define your language

2. Encode property P in the type system

3. Write out typing rules

4. Prove typing rules sound

Types of semantics

Typing is only meaningful in the context of syntax and semantics

Syntax

Previously: what it is Now: what it does

Tells you how to build up programs

Semantic

Previously: what it is Now: what it does

Tells you how to evaluate down programs.

How to read denotational semantics

Do stuff on the board

Topics

• Data collection

• Correctness

• Program Synthesis

• AI-powered inference

• Paper context

Program Synthesis

Long-desired goal of computer science (& AI)

• LISP: code is data

• Contrast with code generation

• Genetic Programming (stochastic program

synthesis)

• A kind of evolutionary method

Evolutionary methods
OG evolutionary method: genetic algorithms

Goal: optimization via fitness function +
stochasticity

• Local search (recombination)

• Global search (mutation)

Best known for:

• Training neural networks, pre-
backpropagation

No formal guarantees

Genetic Programming
Idea: Apply principles from genetic
algorithms to programs, not just
vectors of numbers.

What is it good for?

• Domains requiring structured output

• Domains where you have very little
knowledge a priori

• Domains where you just need a
solution

Warning!

Counter-example guided inductive synthesis (CEGIS)

GOAL: LEARN GENERATING PROGRAM
FROM INPUT-OUTPUT PAIRS

USE FORMAL METHODS TO FIND

CEGIS: Origins

“Sketch” a program

• i.e., write a program that has “holes” in it

• Leverage well-known techniques in PL for

reasoning about “partial programs”

Use an SMT solver

• Previously an “AI thing”

Topics

• Data collection

• Correctness

• Program Synthesis

• AI-powered inference

• Paper context

AI à PL

Both papers feature completely different techniques from AI

• PADS: Structure Discovery

• FlashFill: Version Space Algebras

Will see more from our presenters on Monday

Topics

• Data collection

• Correctness

• Program Synthesis

• AI-powered inference

• Paper context

Context: PADS project

Project active years: 2001—2010ish

• First paper: PADS: Processing Arbitrary
Data Streams

• Retrospective in 2011

• Haskell repo last updated in 2019

• C repo last updated in 2015

XML, JSON, YAML, TOML

• These are all structured data

• Easier to just write something that outputs one of these formats

• History

• XML – bloat

• JSON – inefficient, hard to read

• YAML – user-friendly, ambiguous grammar

• TOML – current config fave

Context: FlashFill

• Appeared: POPL 2011

• Test of Time Award: 2021

Why?

• Spawned several other tools: FlashRelate,

FlashExtract, other programming by

example tools

• Ushered in practical program synthesis

• Actually implemented in end-user software

Where are they now?

• Why did FlashFill take off?

• Why don’t we use PADS?

