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Abstract

We are given a large database of customer transactions.
Each transaction consists of items purchased by a customer
in a visit. We present an efficient algorithm that generates all
significant association rules between items in the database.
The algorithm incorporates buffer management and novel
estimation and pruning techniques. We also present results
of applying this algorithm to sales data obtained from a
large retailing company, which shows the effectiveness of the
algorithm.

1 Introduction

Consider a supermarket with a large collection of items.
Typical business decisions that the management of the
supermarket has to make include what to put on sale,
how to design coupons, how to place merchandise on
shelves in order to maximize the profit, etc. Analysis
of past transaction data is a commonly used approach
in order to improve the quality of such decisions.
Until recently, however, only global data about the
cumulative sales during some time period (a day, a week,
a month, etc.) was available on the computer. Progress
in bar-code technology has made it possible to store the
so called basket data that stores items purchased on a
per-transaction basis. Basket data type transactions do
not necessarily consist of items bought together at the
same point of time. It may consist of items bought by
a customer over a period of time. Examples include
monthly purchases by members of a book club or a
music club.

Several organizations have collected massive amounts
of such data. These data sets are usually stored
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on tertiary storage and are very slowly migrating to
database systems. One of the main reasons for the
limited success of database systems in this area is
that current database systems do not provide necessary
functionality for a user interested in taking advantage
of this information.

This paper introduces the problem of “mining” a large
collection of basket data type transactions for associa-
tion rules between sets of items with some minimum
specified confidence, and presents an efficient algorithm
for this purpose. An example of such an association rule
is the statement that 90% of transactions that purchase
bread and butter also purchase milk. The antecedent
of this rule consists of bread and butter and the con-
sequent consists of milk alone. The number 90% is the
confidence factor of the rule.

The work reported in this paper could be viewed as a
step towards enhancing databases with functionalities
to process queries such as (we have omitted the
confidence factor specification):

o Find all rules that have “Diet Coke” as consequent.
These rules may help plan what the store should do
to boost the sale of Diet Coke.

¢ Find all rules that have “bagels” in the antecedent.
These rules may help determine what products may
be impacted if the store discontinues selling bagels.

o Find all rules that have “sausage” in the antecedent
and “mustard” in the consequent. This query can be
phrased alternatively as a request for the additional
items that have to be sold together with sausage in
order to make it highly likely that mustard will also
be sold.

o Find all the rules relating items located on shelves
A and B in the store. These rules may help shelf
planning by determining if the sale of items on shelf
A is related to the sale of items on shelf B.

o Find the “best” k rules that have “bagels” in the
consequent. Here, “best” can be formulated in terms
of the confidence factors of the rules, or in terms

Knowledge as Association
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What are the database tasks?

Make the database fast
e How?
e Data layout
e Schema design
* Indexing
* Query optimization

Most work in this space focuses on performance.

Very large systems (esp. information retrieval) = correct
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ABSTRACT
The number of complex infrastructures in an industrial setting
is growing and is not immune to unexplained recurring events
such as breakdowns or failure that can have an economic and
environmental impact. To understand these phenomena, sensors
have been placed on the different infrastructures to track, monitor,
and control the dynamics of the systems. The causal study of these
data allows predictive and prescriptive maintenance to be carried
out. It helps to understand the appearance of a problem and find
counterfactual outcomes to better operate and defuse the event.

In this paper, we introduce a novel approach combining the
case-crossover design which is used to investigate acute triggers
of diseases in epidemiology, and the Apriori algorithm which is a
data mining technique allowing to find relevant rules in a dataset.
The resulting time series causal algorithm extracts interesting rules
in our application case which is a non-linear time series dataset.
In addition, a predictive rule-based algorithm demonstrates the
potential of the proposed method.
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1 INTRODUCTION

Monitoring has enabled, with the help of increased storage capacity,
to collect a large amount of data. The data analysis plays a crucial
role in understanding the underlying mechanisms and the occur-
rence of incidents. In the industrial context, this consists of placing
sensors and collecting temporal data like temperature, flow rates,
chemical characteristics, or wind power to capture the evolution
and the dynamics of the system. Exploiting these large amounts of
temporal data is a real challenge facing many companies. Indeed,
they contain enormous amounts of information that could help
improve efficiency or optimize certain processes.

Driven by easy access to machine learning environments and the
recent success of deep learning techniques, many models have been
developed to predict the occurrence of these events but they do not
only work on their causes but also on the correlated variables. This
makes these models less robust as they could miss the incident by
trusting a correlated variable. In areas where decisions and actions
can have serious consequences, for example on humans in medicine
or on the profitability in the industry, it is necessary to understand
black-box models and therefore to carry out a causal study to act
in a justified way. Hence, the objective of causality in an industrial
context is to better understand the decisions taken by artificial
intelligence algorithms, to find the causes of unexplained events,
and to do maintenance policy by anticipating the occurrences of
breakdowns. Therefore, a theoretical approach should be developed
to provide a general framework that could work in an industrial
environment. In particular, the approach should help the operators
understand what are the mechanisms behind every decision that is
taken and allow them to prevent the apparition of an incident by
defusing its arrival.

The interest in causality is growing and these studies are becom-
ing essential in industry and in many other fields of applications.
For instance, it is common for distillation units to have recurrent

problems occurring during petroleum refining. The causal study
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