Announcements

Monday Presentations (I will send a reminder email on Friday)

Graduate Students: Project Guidelines on website
Help selecting a topic

To facilitate project discussion, | will have extra availability:

2-3 page project proposals

Wednesday, Sep. 29, Innovation E456, 1-5pm

Thursday, Sep. 30, Teams only, 1-5pm . .
Friday, Oct. 1, Innovation E456 1-5pm Due Fri, Oct 8 in Blackboard
Monday, Oct. 4, Innovation E456 1-5pm

Tuesday, Oct. 5, Teams only, 1-5pm

Please feel free to stop by my my office or drop into Teams! This is your time.

CS 295B/CS 395B |
Lecture 4: Formal
Discovery Method

¥ | The University of Vermont

Methods overview/refresher
What are formal methods?
What is formal language designe

Formal language design as method

If we have time:

Notation: The Good, the Bad, the Ugly

e

)

L

AN

|

Methods refresher

Recall: methods are how you do something
Closely tied to research questions and hypotheses

Specifically: Methods are the community-recognized accepted evaluation techniques.

Research area: Human Factors
Project: Design for accessibility
Hypothesis: This design is usable

Method: Scenario Based Design

« Tell a “story”, record how a user

responds

()

(
‘\

S =Rl

A NS

AN

|

Research area: Reinforcement Learning

Project: Novel learning algorithm

Hypothesis: New algorithm is better

Method: Benchmarking

« Nailve sample of environments not

representative
« Select representative collection

* Must be updated

Research area: Programming Languages
Project: Language-based security

Hypothesis: This approach is less
conservative than past approach

Method: Formal proof

« Today: would also do an empirical

evaluation

IIENNWACAITIEY

S)

LN AN

NG

[

Methodsovervdew/refresher
What are formal methods?
What is formal language designe

Formal language design as method

If we have time:

Notation: The Good, the Bad, the Ugly

e

)

L

AN

|

What are formal methods?

[A] Formal system ... [is the] theorefical organization of

terms and implicit relationships that is used as a tool for the

analysis of the concept of deduction.

Models—structures that interpret the symbols of a formal

system—are often used in conjunction with formal systemes.

Encyclopedia Britannica: https://www.britannica.com/topic/formal-system _

https://www.merriam-webster.com/dictionary/implicit
https://www.britannica.com/topic/deduction-reason

What are formal methods?

Apply mathiness directly to forehead

Encyclopedia Britannica: https://www.britannica.com/topic/formal-system -

https://www.merriam-webster.com/dictionary/implicit
https://www.britannica.com/topic/deduction-reason

&)

.

by
>

@

Freya Holmér @FreyaHolmer - Sep 11
btw these large scary math symbols are just for-loops

. . = e.
Summation 9, LU >
(capital sigma) I for(n=0; n<=4; n++)

sum += 3%*n;
n=>0

(capital pi)

. prod = 1;
Product | | 2‘/‘] for(n=1; n<="; n++)

prod *= 2*n;

n—I|

Q 549 1T 7.3K Q 35.2K i

Franklin Lynam @FranklinLynam - Sep 11

| hate the symbols in math so much. It just feels like unnecessary
gatekeeping for trivial concepts. How many mathematical proofs could be
made widely accessible with just a little bit of psuedocode?

QO 96 T 95 Q 369 i)

nisquaredbyi
@pisquaredbyi

Replying to @FranklinLynam and @FreyaHolmer

The for loops are equally inaccessible. Mathematics
just has different conventions, and many people might
also be helped by learning for loops via these symbols

1:27 PM - Sep 11, 2021 - Twitter Web App

Classically: formal notation is a kind of

language; purpose is communication

Can also think of formal notation as a

kind of compression

Purpose: to make something easier than

it would have been without the notation

IOV N"))) YW\ (RSN

N

[

r
'
'
'
'
'
I
'
'
'
'
'
I
'
'
'
'
1
'
'
'
'
'
'
'
'
'
'
'
'
1
'
'
'
'
'
'
'
|
'
'
'
'
'
'
'
'
'
'
|
'
'
'
'
1
1
'
'
'
'
.

.03341v2 [stat.ML] 26 Jul 2018

iv:1807

ar

Troubling Trends in Machine Learning Scholarship

Zachary C. Lipton* & Jacob Steinhardt*
Carnegie Mellon University, Stanford University
zlipton@cmu.edu, jsteinhardt@cs.stanford.edu

July 27, 2018

1 Introduction

Collectively, machine learning (ML) researchers are engaged in the creation and dissemination of
knowledge about data-driven algorithms. In a given paper, researchers might aspire to any subset
of the following goals, among others: to theoretically characterize what is learnable, to obtain
understanding through empirically rigorous experiments, or to build a working system that has high
predictive aceuracy. While determining which knowledge warrants inquiry may be subjective, once
the topic is fixed, papers are most valuable to the community when they act in service of the reader,
creating foundational knowledge and communicating as clearly as possible.

What sort of papers best serve their readers? We can enumerate desirable characteristics: these
papers should (i) provide intuition to aid the reader’s understanding, but clearly distinguish it from
stronger conclusions supported by evidence; (ii) describe empirical investigations that consider and
rule out alternative hypotheses [62]; (iii) make clear the relationship between theoretical analysis and
intuitive or empirical claims [64]; and (iv) use language to empower the reader, choosing terminology
to avoid misleading or unproven connotations, collisions with other definitions, or conflation with
other related but distinct concepts [56].

Recent progress in machine learning comes despite frequent departures from these ideals. In this
paper, we focus on the following four patterns that appear to us to be trending in ML scholarship:

1. Failure to distinguish between explanation and speculation.

2. Failure to identify the sources of empirical gains, e.g. emphasizing unnecessary modifications
to neural architectures when gains actually stem from hyper-parameter tuning.

. Mathiness: the use of mathematics that obfuscates or impresses rather than clarifies, e.g. by
confusing technical and non-technical concepts.

. Misuse of language, e.g. by choosing terms of art with colloquial connotations or by overloading
established technical terms.

While the causes behind these patterns are uncertain, possibilities include the rapid expansion
of the community, the consequent thinness of the reviewer pool, and the often-misaligned incen-
tives between scholarship and short-term measures of success (e.g. bibliometrics, attention, and
entrepreneurial opportunity). While each pattern offers a corresponding remedy (don’t do it), we
also discuss some speculative suggestions for how the community might combat these trends.

As the impact of machine learning widens, and the audience for rescarch papers increasingly
includes students, journalists, and policy-makers, these considerations apply to this wider audience

*Equal Authorship

How can this possibly be
easier?

A3 T levels
v | Exp; (op) Expa expressions
if Exp, then Exp, else Expy

Exp, Exp;

(Exp. | ExpT)(£)

level {in Exp

policy £: Exp, then Level in Exp

let x:t=Exp

print {Exp.} Exp

n| b| Ax:7.e| record x7v
error | () concrete primitives

x| contextt symbolic values
c1 (op) 62 | ©) (op) 2

o) (op) 62

if o then v, else vy

c|lo values
v | e (op) ez expressions
if ey thene else ef | ¢) e

let x:tT=e¢; in e

letrecf:t1=e)ine;

defer x: 1 {¢} default v,

assert ¢

concretize ¢ with v,

Figure 2: The A; abstract syntax.

What speakers see

A3 T levels
v | Exp; (op) Expa expressions
if Exp, then Exp, else Expy

Exp, Exp;

(Exp. | ExpT)(£)

level {in Exp

policy £: Exp, then Level in Exp

let x:t=Exp

print {Exp.} Exp

n| b| Ax:7.e| record x7v
error | () concrete primitives

x| contextt symbolic values
c1 (op) 62 | ©) (op) 2

o) (op) 62

if o then v, else vy

c|lo values
v | e (op) ez expressions
if ey thene else ef | ¢) e

let x:tT=e¢; in e

letrecf:t1=e)ine;

defer x: 1 {¢} default v,

assert ¢

concretize ¢ with v,

Figure 2: The A; abstract syntax.

Disambiguation

4. Properties

We describe more formally the guarantees that Jeeves provides. We
prove progress and preservation properties for Aj. We show that the
only way the value for the high component of a sensitive value to
affect the output of the computation is if the policies permit it.

4.1 Progress and Preservation

We first show the correctness of evaluation. We can prove progress
and preservation properties for A;: evaluation of an expression e
always results in a value v and preserves the type of e, including the
internal nondeterminism tag 9.

There are two interesting parts to the proof: showing that all
function applications can be reduced and showing that all defer
and assert expressions can be evaluated to produce appropriate
constraint expressions. We can first show that the A;j type system
guarantees that all functions are concrete.

Lemma 1 (Concrete Functions). If v is a value of type T — T»,
then v = Ax : T).e, where e has type 1a.

Theorem 4.1 (Progress). Suppose e is a closed, well-typed ex-
pression. Then e is either a value v or there is some €' such that
F{0,0,e) — (X', A',€').

Example from Yang et al., A Language for
Automatically Enforcing Privacy Policies,
POPL 2012

Proving things we care about generally

(progress and preservation)

* Proving a specific property (soundness of

data release)

« Highlighting the non-standard parts

FairSquare: Probabilistic Verification of Program Fairness

AWS ALBARGHOUTHI, University of Wisconsin-Madison, USA
LORIS D’ANTONI, University of Wisconsin-Madison, USA
SAMUEL DREWS, University of Wisconsin-Madison, USA
ADITYA V. NORI, Microsoft Research, UK

With the range and sensitivity of algorithmic decisions expanding at a break-neck speed, it is imperative that
we aggressively investigate fairness and bias in decision-making programs. First, we show that a number of
recently proposed formal definitions of fairness can be encoded as probabilistic program properties. Second,
with the goal of enabling rigorous reasoning about fairess, we design a novel technique for verifying
probabilistic properties that admits a wide class of decision-making programs. Third, we present FairSquare,
the first verification tool for automatically certifying that a program meets a given fairness property. We
evaluate FairSquare on a range of decision-making programs. Our evaluation demonstrates FairSquare's
ability to verify fairness for a range of different programs, which we show are out-of-reach for state-of-the-art
program analysis techniques.

CCS Concepts: » Mathematics of computing —» Probabilistic inference problems; « Software and its
engineering —» Automated static analysis;

Additional Key Words and Phrases: Algorithmic Fairness, Probabilistic Programming, Probabilistic Inference

ACM Reference Format:

Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori. 2017. FairSquare: Probabilistic Verifica-
tion of Program Fairness. Proc. ACM Program. Lang. 1, OOPSLA, Article 80 (October 2017), 30 pages.
https://doi.org/10.1145/3133904

1 INTRODUCTION

A number of very interesting applications of program analysis have been explored in the proba-
bilistic setting: reasoning about cyber-physical systems [Sankaranarayanan et al. 2013], proving
differential privacy of complex algorithms [Barthe et al. 2014], reasoning about approximate pro-
grams and hardware [Carbin et al. 2013], synthesizing control programs [Chaudhuri et al. 2014),
amongst many others. In this paper, we turn our attention to the problem of verifying fairness of
decision-making programs.

Program Bias As software permeates our personal lives, corporate world, and bureaucracy, more
and more of our critical decisions are being delegated to opaque algorithms. Software has thus
become a powerful arbitrator of a range of significant decisions with far-reaching societal impact—
hiring [Kobie 2016; Miller 2015), welfare allocation [Eubanks 2015], prison sentencing [Angwin

Authors' addresses: A. Albarghothi, L. D'Antoni, S. Drews, Department of Computer Sciences, University of Wisconsin-
Madison, 1210 West Dayton Street, Madison, WL, 53706, US; A. Nori, Microsoft Research Cambridge, 21 Station Road
Cambridge CB1 2FB United Kingdom.

Permission to make digital or hard copies of all or part of this work for personal or dassroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, Lo post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org,

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.
2475-1421/2017/10-ART80

https://doi.org/10.1145/3133504

Proc. ACM Program. Lang., Vol 1, No. OOPSLA, Article 50. Publication date: October 2017.

Another example

A story about the power of models and formalisms

Problem domain: compilers

« A compiler fransforms code in some way

« Opftimizing compiler: make a new program that is EQUIVALENT and FASTER

« How to do thise Memory hierarchy and locality: register -> cache -> disk

Central question: how to optimally allocate to registerse

Model as a graph, equivalent to graph coloring

Nodes: program variables; edges: "liveness”

A story about the power of models and formalisms

Problem: graph
coloring is NP-
complete

A story about the power of models and formalisms

Formal language solution:

« Rewrite the program to an intermediate representation (IR): static single assignment
« This IR generates many more variables, but changes the graph connectivity
* No longer the general graph-coloring problem

* Now: special subset of graphs that are easier to reason about
Where have we seen

« Problem is now tractable (NO LONGER NP-COMPLETE) this before?
(Horn clause)

Big idea

Syntactic rewrites can change

the complexity of a problem.

plraaretermalraethodos
What is formal language designe

Formal language design as method

If we have time:

Notation: The Good, the Bad, the Ugly

e

)

L

AN

|

What is formal language design?

Each formal system has a formal language composed of primitive symbols acted on by

certain rules of formation
(statements concerning the symbols, functions, and sentences allowable in the system)

and developed by inference from a set of axioms.

The system thus consists of any number of formulas built up through finite combinations of
primitive symbols—combinations that are formed from the axioms in accordance wit

stafed rules.

https://www.britannica.com/topic/inference-reason
https://www.britannica.com/topic/set-mathematics-and-logic

25) levels
v | Exp; (op) Expa expressions
if Exp, then Exp, else Expy

Exp, Exp>

{Exp. | ExpT)(£)

level ¢ in Exp Primitive Symbols
policy £: Exp, then Level in Exp

let x:t=Exp

print {Exp.} Exp

Rules of formation

n| b| Ax:t.e| record x7v
error | () concrete primitives

x| contextt symbolic values
¢y (op) 62 |) (0p) 2

o) (op) 62

if o then v, else vy

c|lo

v | e (op) e

if ey thene else ef | ¢) e
let x:T=¢; ine

letrec f:t=¢) ine;
defer x: 1 {e} default v,
assert ¢

concretize ¢ with v,

Figure 2: The A; abstract syntax.

A3 T levels

v | Exp; (op) Exp> expressions
if Exp, then Exp, else Expy

T) Rule-based finite

level {in Exp

policy £: Exp, then Level in Exp combinations

let x:t=Exp
print {Exp.} Exp

n| b| Ax:1.e| record x7v
error | () concrete primitives

x| contextt symbolic values
¢y (op) 62 |) (0p) 2

o) (op) 62

if o then v, else vy

c|lo

v | e (op) e2

if ey thene else ef | ¢) e
let x:tT=e¢; in e

letrec f:t=¢) ine;
defer x: 1 {¢} default v,
assert ¢

concretize ¢ with v,

Figure 2: The A; abstract syntax.

A3 T levels

v | Exp; (op) Exp> expressions
if Exp, then Exp, else Expy

T) Rule-based finite

level {in Exp

policy £: Exp, then Level in Exp combinations

let x:t=Exp
print {Exp.} Exp

n| b| Ax:1.e| record x7v
error | () concrete primitives

x| contextt symbolic values
¢y (op) 62 |) (0p) 2

o) (op) 62

if o then v, else vy

c|lo

v | e (op) e2

if ey thene else ef | ¢) e
let x:tT=e¢; in e

letrec f:t=¢) ine;
defer x: 1 {¢} default v,
assert ¢

concretize ¢ with v,

Figure 2: The A; abstract syntax.

All kinds of things

- Program equivalence (may not be
decidable)

« Type inference is sound (progress and

preservation)

« Domain-specific properties (“correct by

construction”)

Formal language design as method

If we have time:

Notation: The Good, the Bad, the Ugly

e

)

L

AN

|

Formal language design as method

“Correct by construction”

Goal: Design a language (primitives and rules for connecting them) such that
by virtue of being expressed in that language,

a program must have certain properties.

Formal language design as method

“Correct by construction”

As method: A community-approved way of evaluating hypotheses and research

questions

Formal language design as method

“Correct by construction”

Research questions: Often appear to be can we (b/c we focus on the design), but

are often actually mechanistic. Why?¢

Method of the method (recipe)

1. Surface syntax (easy to write, easy to extract, etc.)

2. Typically translate into a core language.
1. May be smaller/simpler (reduces redundancies required by "users”)

2. May have more rules (disambiguation)

3. Core language has a semantics, rules for what syntax means.

1. Semantics may add a bunch of new notation, depending on the task.

Prove things over the semantics (inductively).

Formal language semantics example

Important things to remember:

1.

These rules are mechanistic and
tightly coupled with the syntax

Every syntactic construct (of the
core lang.) gets used at least

once.

You make this stuff up.

/ . .
< <IT

——— S-REFLEXIVE = — S-INT S-BooL. — ——— S-RECFUN —————— = S§.FuN
T<t S-REFLEXIVE int, <:int bool, <:bool ndn<u—on U <T DT
rept v <1 rep
ey %St OK-SUBTYPE =7 OK-BASETYPE ——F=——— OK-BASEFUNCTION
rept rep p repB; > T
nroy ;
rep(t =) repn rept =0 repT; 5T rept =T,

OK-HOFUNCTION

OK-RECFUNCTIONBASE OK-RECFUNCTION

rep (1 = 1) =B

yke:(1,8)

T rept
F:‘yii:l"(x) T-Var iybn:int, TNt vk b: bool, T-Boot ;v () - unit T-Unir W—prextt‘r
Ciybey:ty Diyber:ta T,T2<:T rept Ciyke:bool. TiyFe:ty DiyFer:m 1. <:T rept
Iiykej(op)ex:T EOp iyt if ethene else ef: 1T
IiyFe:bool Tisymbe :B; Iisymbes:By Bi.B2<:B. reppe
iy if ethene, else e/ : B,

rep (1) 5 v) 510 rep (1 = 7)) = (1] = 1)

T-CONTEXT

T-CoNDC

T-CONDSYM

Cx:tuyte:v rept rept
Oy (Ax:t4.e):ta =7

Ciyber:t 51 DiyFer:t, T, <:ty rept; rept
T-LAMBDA L L L1 E s T-Arp
Liyk (e1 e2): 12

Ifiu-2tmyhe:ti—=tn I'.f:ni?tg:yl—ez:tg rept repm

T-LETREC
Ciybletrecf:1 S t=ejine:

y=concrete Iiybe :Ty =1 Diyber:T] 1) <:Ty rept; repm
Ciyk(e1e2)

T-ApPCURREC

Ix:B;y-e.:bool TIiyFv:p Iyt e, :bool
;v (defer x: B{ e.} default v):p Iyt (assert e.) : unit
Tiykey:p iye :p Liykvo:p

I;y+ (concretize ¢) with v) : B,

T-DEFER T-ASSERT

T-CONCRETIZE

Figure 5: Static semantics for Aj describing simple type-checking and enforcing restrictions on scope of nondeterminism and recursion. Recall

that B refers to base (non-function) types.

If we have time:

Notation: The Good, the Bad, the Ugly

e

)

L

AN

|

Notations you might see

Three styles of semantics:

1. Denotation
1. Mostly in linguistics, logic, mathematics, old-school PL, defined over abstract objects.

2. "What this program means”

2. Axiomatic
1. Most in distributed and large-scale systems, defined over axioms (things that must be true).

2. "What collection of things are true in this program.”

3. Operational
1. Mostly in modern PL, novel languages, small systems, defined over a machine that takes steps.

2. “What this program does.”

