
CS 295B/CS 395B
Systems for Knowledge
Discovery

Lecture 4:

Example presentations

Guidelines
• Presentations should be 18-20minutes

• Rough rating system

• Bad – Factually incorrect or no discernable content

• Fair – Regurgitates facts from the paper in the same order

• Good – Provides narrative cohesion and insights beyond surface text of paper

• Excellent – Advertises and entertains while teaching the audience something

• Tip: do extra reading for context, read related or cited work, etc.

You cannot cover everything; make editorial choices

Try to mix things up, visually.

Outline
• Overview

• Example presentation 1(excellent)

• Example presentation 2 (fair to good)

• Analysis of presentations

Systems for KDD: From
Concepts to Practice

Authors: Dunkel et al.

Presenter: Emma Tosch

Sales Logs Inventory

Sales Logs Inventory Stacy

SELECT S.date, S.item, S.tid, S.iid
L.clicks, L.time, L.region,
I.stock

INTO Stacy
FROM Sales as S, Logs as L, Inventory as I
WHERE S.tid = L.tid
AND S.iid = I.iid

Sales Logs Inventory Stacy

SELECT AVG(time), AVG(clicks)
FROM Stacy
GROUP BY tid

Sales Logs Inventory Stacy

SELECT *
FROM Stacy
WHERE region is NULL

Sales Logs Inventory Stacy

Stacy

from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
import psycopg2 as p
from psycopg2 import Error

query = 'SELECT * from STACY'

conn = p.connect(
user = os.environ['DB_USER’],
password = os.environ['DB_PASS’],
host = 'localhost’,
port = '5432’,
database = 'Stacy'

)

cursor = conn.cursor()
cursor.execute(query)
result = cursor.fetchall()

more manipulation until we get features X and outcome y

clf = DecisionTreeClassifier(random_state=1234)
model = clf.fit(X, y)

Stacy

from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
import os
import psycopg2 as p
from psycopg2 import Error

query = 'SELECT * from STACY'

conn = p.connect(
user = os.environ['DB_USER’],
password = os.environ['DB_PASS’],
host = 'localhost’,
port = '5432’,
database = 'Stacy'

)

cursor = conn.cursor()
cursor.execute(query)
result = cursor.fetchall()

more manipulation until we get features X and outcome y

clf = DecisionTreeClassifier(random_state=1234)
model = clf.fit(X, y)

Stacy

from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
import os
import psycopg2 as p
from psycopg2 import Error

query = 'SELECT * from STACY'

conn = p.connect(
user = os.environ['DB_USER’],
password = os.environ['DB_PASS’],
host = 'localhost’,
port = '5432’,
database = 'Stacy'

)

cursor = conn.cursor()
cursor.execute(query)
result = cursor.fetchall()

more manipulation until we get features X and outcome y

clf = DecisionTreeClassifier(random_state=1234)
model = clf.fit(X, y)

Stacy

from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
import os
import psycopg2 as p
from psycopg2 import Error

query = 'SELECT * from STACY'

conn = p.connect(
user = os.environ['DB_USER’],
password = os.environ['DB_PASS’],
host = 'localhost’,
port = '5432’,
database = 'Stacy'

)

cursor = conn.cursor()
cursor.execute(query)
result = cursor.fetchall()

more manipulation until we get features X and outcome y

clf = DecisionTreeClassifier(random_state=1234)
model = clf.fit(X, y)

Stacy

from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
import os
import psycopg2 as p
from psycopg2 import Error

query = 'SELECT * from STACY'

conn = p.connect(
user = os.environ['DB_USER’],
password = os.environ['DB_PASS’],
host = 'localhost’,
port = '5432’,
database = 'Stacy'

)

cursor = conn.cursor()
cursor.execute(query)
result = cursor.fetchall()

more manipulation until we get features X and outcome y

clf = DecisionTreeClassifier(random_state=1234)
model = clf.fit(X, y)

Stacy

from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
import os
import psycopg2 as p
from psycopg2 import Error

query = 'SELECT * from STACY'

conn = p.connect(
user = os.environ['DB_USER’],
password = os.environ['DB_PASS’],
host = 'localhost’,
port = '5432’,
database = 'Stacy'

)

cursor = conn.cursor()
cursor.execute(query)
result = cursor.fetchall()

more manipulation until we get features X and outcome y

clf = DecisionTreeClassifier(random_state=1234)
model = clf.fit(X, y)

A quick look at the output

• Interpret as a bunch of if-statements

• Remember: the output is a class (e.g.,

binary classifier for sale of item class)

• Can be hard to read

https://mljar.com/blog/visualize-decision-tree/

Visualize!

• Load up new library (here, matplotlib)

• Use colors to indicate majority class at

this node

• Can be shown to non-domain-experts

https://mljar.com/blog/visualize-decision-tree/

What could go wrong?

Sales Logs Inventory

Sales Logs Inventory

Stacy

Sales Logs Inventory Stacy

from sklearn import datasets
from sklearn.tree import
from sklearn import tree
import os
import psycopg2 as p
from psycopg2 import Error

query = 'SELECT * from STACY'

conn = p.connect(
user = os.environ['DB_USER’
password = os.environ
host = 'localhost’,
port = '5432’,
database = 'Stacy'

)

cursor = conn.cursor()
cursor.execute(query)
result = cursor.fetchall

more manipulation until we get features X and outcome y

clf = DecisionTreeClassifier
model = clf.fit(X, y)

Sales Logs Inventory Stacy

from sklearn import datasets
from sklearn.tree import
from sklearn import tree
import os
import psycopg2 as p
from psycopg2 import Error

query = 'SELECT * from STACY'

conn = p.connect(
user = os.environ['DB_USER’
password = os.environ
host = 'localhost’,
port = '5432’,
database = 'Stacy'

)

cursor = conn.cursor()
cursor.execute(query)
result = cursor.fetchall

more manipulation until we get features X and outcome y

clf = DecisionTreeClassifier
model = clf.fit(X, y)

Here, use a KDD-
specific tool!

Tightly couple the
steps of the KDD
process…

Empirical Study: Approach

Goal Idea: build a system using principles from existing systems

Identify desirable components, prototype idealized system

Overview: existing system support for KDD

System Select Clean Transform Mine Interpret Evaluate

Intelligent Miner ✓ ✓
MineSet ✓ ✓ ✓ ✓
MLC++ ✓ ✓
Clementine ✓ ✓ ✓ ✓
DBMiner (includes
GeoMiner)

✓

IDIS ✓ ✓
Mobal ✓ ✓
DataSurveyor

Emerald ✓

Overview: existing system support for KDD

System Select Clean Transform Mine Interpret Evaluate

Intelligent Miner ✓ ✓
MineSet ✓ ✓ ✓ ✓
MLC++ ✓ ✓
Clementine ✓ ✓ ✓ ✓
DBMiner (includes
GeoMiner)

✓

IDIS ✓ ✓
Mobal ✓ ✓
DataSurveyor

Emerald ✓

Overview: existing system support for KDD

System Select Clean Transform Mine Interpret Evaluate

Intelligent Miner ✓ ✓
MineSet ✓ ✓ ✓ ✓
MLC++ ✓ ✓
Clementine ✓ ✓ ✓ ✓
DBMiner (includes
GeoMiner)

✓

IDIS ✓ ✓
Mobal ✓ ✓
DataSurveyor

Emerald ✓

Overview: existing system support for KDD

System Select Clean Transform Mine Interpret Evaluate

Intelligent Miner ✓ ✓
MineSet ✓ ✓ ✓ ✓
MLC++ ✓ ✓
Clementine ✓ ✓ ✓ ✓
DBMiner (includes
GeoMiner)

✓

IDIS ✓ ✓
Mobal ✓ ✓
DataSurveyor

Emerald ✓

Overview: existing system support for KDD

System Select Clean Transform Mine Interpret Evaluate

Intelligent Miner ✓ ✓
MineSet ✓ ✓ ✓ ✓
MLC++ ✓ ✓
Clementine ✓ ✓ ✓ ✓
DBMiner (includes
GeoMiner)

✓

IDIS ✓ ✓
Mobal ✓ ✓
DataSurveyor

Emerald ✓

Overview: existing system support for KDD

System Select Clean Transform Mine Interpret Evaluate

Intelligent Miner ✓ ✓
MineSet ✓ ✓ ✓ ✓
MLC++ ✓ ✓
Clementine ✓ ✓ ✓ ✓
DBMiner (includes
GeoMiner)

✓

IDIS ✓ ✓
Mobal ✓ ✓
DataSurveyor

Emerald ✓

Existing system support for DM

System Neural
Nets

Rule
Induction

Decision
Trees

Other Generalization Characterization Association

Intelligent Miner

MineSet ✓ ✓
MLC++ ✓
Clementine ✓ ✓
DBMiner (includes
GeoMiner)

✓ ✓ ✓ ✓

IDIS

Mobal

DataSurveyor

Emerald

Existing system support for DM

System Neural
Nets

Rule
Induction

Decision
Trees

Other Generalization Characterization Association

Intelligent Miner

MineSet ✓ ✓
MLC++ ✓
Clementine ✓ ✓
DBMiner (includes
GeoMiner)

✓ ✓ ✓ ✓

IDIS

Mobal

DataSurveyor

Emerald

Existing systems: systems considerations

System Het. HW/OS Parallelization
/Efficiency

Modularity API/DX
Interop

Code
Generation

Easy
Iteration

Intelligent Miner ✗ ✓
MineSet ✗ ✓ ✓
MLC++ ✓
Clementine ✓ ✓ ✓
DBMiner (includes
GeoMiner)

✓ ✓

IDIS ✓ ✓
Mobal ✓ ✓
DataSurveyor ✓
Emerald ✓ ✓

Existing systems: systems considerations

System Het. HW/OS Parallelization
/Efficiency

Modularity API/DX
Interop

Code
Generation

Easy
Iteration

Intelligent Miner ✗ ✓
MineSet ✗ ✓ ✓
MLC++ ✓
Clementine ✓ ✓ ✓
DBMiner (includes
GeoMiner)

✓ ✓

IDIS ✓ ✓
Mobal ✓ ✓
DataSurveyor ✓
Emerald ✓ ✓

Existing systems: systems considerations

System Het. HW/OS Parallelization
/Efficiency

Modularity API/DX
Interop

Code
Generation

Easy
Iteration

Intelligent Miner ✗ ✓
MineSet ✗ ✓ ✓
MLC++ ✓
Clementine ✓ ✓ ✓
DBMiner (includes
GeoMiner)

✓ ✓

IDIS ✓ ✓
Mobal ✓ ✓
DataSurveyor ✓
Emerald ✓ ✓

Existing systems: systems considerations

System Het. HW/OS Parallelization
/Efficiency

Modularity API/DX
Interop

Code
Generation

Easy
Iteration

Intelligent Miner ✗ ✓
MineSet ✗ ✓ ✓
MLC++ ✓
Clementine ✓ ✓ ✓
DBMiner (includes
GeoMiner)

✓ ✓

IDIS ✓ ✓
Mobal ✓ ✓
DataSurveyor ✓
Emerald ✓ ✓

Existing systems: systems considerations

System Het. HW/OS Parallelization
/Efficiency

Modularity API/DX
Interop

Code
Generation

Easy
Iteration

Intelligent Miner ✗ ✓
MineSet ✗ ✓ ✓
MLC++ ✓
Clementine ✓ ✓ ✓
DBMiner (includes
GeoMiner)

✓ ✓

IDIS ✓ ✓
Mobal ✓ ✓
DataSurveyor ✓
Emerald ✓ ✓

Existing systems: systems considerations

System Het. HW/OS Parallelization
/Efficiency

Modularity API/DX
Interop

Code
Generation

Easy
Iteration

Intelligent Miner ✗ ✓
MineSet ✗ ✓ ✓
MLC++ ✓
Clementine ✓ ✓ ✓
DBMiner (includes
GeoMiner)

✓ ✓

IDIS ✓ ✓
Mobal ✓ ✓
DataSurveyor ✓
Emerald ✓ ✓

Conclusions

• Building KDD systems is hard, but worthwhile

• Existing systems (as of the 90s) supported a wide array of functionality

• Iterative human-centered parts are the hardest

A Database Perspective
on Knowledge Discovery

Authors: Imielinksi and Mannila

Presenter: Emma Tosch

Context

• Not a research article per se

• Appeared in the Communications of the

ACM (CACM) in November 1996

• For a general CS audience

What is SQL?
• ”Structured Query Language”

• Small number of primitives

• SELECT columns from tables

• Filter data WHERE constraints are true

• JOIN tables on columns (i.e., find rows that match

content)

• Compute aggregates (AVG, COUNT, VAR)

• Returns data (as tuples) from a database

This Photo by Unknown Author is licensed under CC BY-NC

http://www.groundreport.com/heres-excellent-guide-understanding-sql/
https://creativecommons.org/licenses/by-nc/3.0/

What are ad hoc queries?

SELECT <col+> FROM <tab+> INNER JOIN <constraint*>

(not the complete grammar)

Combinatorial grammar == endless possibilities
(can’t optimize for specific tables or joins)

Big Questions

• Performance: How do we make the KDD

process faster?

• Functionality: How do we do closure?

Performance

• Article doesn’t go into much detail

• Tighter coupling

• The future will push for this

• Analogy with I/O and traditional

database systems

This Photo by Unknown Author is licensed under CC BY-NC

http://www.pngall.com/runner-png
https://creativecommons.org/licenses/by-nc/3.0/

Functionality

• Question: What do we want knowledge

querying systems to be able to do?

• Answer: all the things, very well

• How? Closure.

What is the problem with existing KDD systems (in 1996)?

• Not pluggable

• Specific to a particular data mining technique

• Basically no re-usable components

• Data mining disconnected (conceptually) from data storage

• What to do with “KDD objects?”

Closure

• Want to compose queries and KDD objects

• Queries can be regular SQL queries or special KDD SQL queries

• Closure allows embedding in a host language or application

Why rule generation is Hard

Consider simple association rules (Horn clauses):

P1, P2, .., Pn à Q

Total number of possible rules is exponential in the number of

columns in the simplest case.

(enumerating these is what we mean by “Any database implicitly

defines the collection of all propositional or predicate rules in it.”)

All rules share structure

• Body: P1, ... Pn

• Consequent: Q

• Support: number of data points (used

to compute power?)

• Confidence: Frequency

• Rules look like querying!

Good knowledge queries can be compiled

• “regular” SQL is compiled and

optimized

• Need support for high-level primitives

and composition

• Clever optimizations come from the

data itself

This Photo by Unknown Author is licensed
under CC BY-SA

http://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools
https://creativecommons.org/licenses/by-sa/3.0/

Conclusion
Querying tools must
support KDD objects for

interoperability and

optimized

performance!This Photo by Unknown Author
is licensed under CC BY-SA

https://www.mrgscience.com/ess-ia-results-analysis--conclusions.html
https://creativecommons.org/licenses/by-sa/3.0/

Meta

Talk structure

• Ground the work with an example, story, or context

• Identify the problem and why it is important

• State the solution

• Walk the audience through the high-level components of the solution

• Focus on easy-to-understand examples (remember: the talk is an advertisement)

Good: summarizing factual information

Closure

• Want to compose queries and KDD objects

• Queries can be regular SQL queries or special KDD SQL queries

• Closure allows embedding in a host language or application

Excellent: synthesizing factual information into an
easily-digestable format

Existing systems: systems considerations

System Het. HW/OS Parallelization
/Efficiency

Modularity API/DX
Interop

Code
Generation

Easy
Iteration

Intelligent Miner ✗ ✓
MineSet ✗ ✓ ✓
MLC++ ✓
Clementine ✓ ✓ ✓
DBMiner (includes
GeoMiner)

✓ ✓

IDIS ✓ ✓
Mobal ✓ ✓
DataSurveyor ✓
Emerald ✓ ✓

An excellent presentation can always be improved

Overview: existing system support for KDD

System Select Clean Transform Mine Interpret Evaluate

Intelligent Miner ✓ ✓
MineSet ✓ ✓ ✓ ✓
MLC++ ✓ ✓
Clementine ✓ ✓ ✓ ✓
DBMiner (includes
GeoMiner)

✓

IDIS ✓ ✓
Mobal ✓ ✓
DataSurveyor

Emerald ✓

Should have had
visual examples for

each of these

Good luck!

