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Lecture agenda

« Announcements

« This week: change of student hours for the exam

« No Wed student hours

« Student hours today (2:30-4pm, Innovation E456)

e Exam format

 Infroduction to planning, search via topics and vocabulary
for the rest of the semester



Exam format

« 5 questions + 1 extra credit

« 1 True/False question

* Finding and explaining an inference errors

* Finding and explaining a resolution errors

« Scenario-based design question: searching for satisfying assignments
* More open-ended ontology question

« Extra credit: surprise!

- Wil give you a cheatsheet of rewrite rules and inference schemata

« No examples!




Planning

Logic and ontologies gave us the foundations for the rest of the semester. ‘

Planning is the selection of actions to achieve a goal without interacting with an environment.

An action is an intervention in an environment that may change its state.
An intervention is a procedure for manipulating state.

The state of an environment is the current set of categories in our knowledge base...

(think: snapshot of the database that holds this information and the elements of the relations)

A goal is a function of a state.



Expressing Goals
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Expressing invariants
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Actions as interventions on state

¢
S
<)

An action is an intervention in an environment that may change i



Actions as interventions on state
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Actions are (named) functions from state to state.



Planning vs.lad hoc action selection

While goal not met:
move towards goal location
1f obstructed, rotate random angle
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How?

Each action function can only be applied when certain things are frue
« We can represent these preconditions with propositional formulas

Each action function has a possible effect that may cause the outputs

some predicates to change



Actions have preconditions
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Actions have effects

[nextTo(Sy.robot, Sy.sofa)] =0
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Logical inference as planning?

What are the goals?
What are the actions?
What is the environment?
What is the current state?

What are the invariants?



Resolution as planning?

What are the goals?
What are the actions?
What is the environment?
What is the current state?

What are the invariants?



Planning via graphs

« Basic ideaq: single start state, single goal state
« Edges are permissible actions, directed to next state

« Next states are updated with the effects of actions




Are these really planning problems?

Planning is the selection of actions to achieve a goal without interacting

with an environment.
« Should planning require a model of the environment?

« Does planning need to be relationale
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Abstract

We explore the use of expert iteration in the con-
text of language modeling applied to formal math-
ematics. We show that at same compute bud-

et, expert iteration, by which we mean proof 2 7 5
& be 4 _M"I.). E applicable to important practical problems (e.g. software

search interleaved with learning, ¢*
performs proof search only. We ¢
when applied to a collection of fc
of sufficiently varied difficulty, e:
capable of finding and solving a ¢
creasingly difficult problems, witl
associated ground-truth proofs. F
ing this expert iteration to a mani
of problem statements, we achievi
on the miniF2F benchmark, autor
multiple challenging problems d
school olympiads.

1. Introduction
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2018; Wu et al., 2016), vision (Radf
& Le, 2019), and image generation (
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whether a trajectory (i.e. a proof) is successful (i.e. formally
correct). But the vast scope of formal mathematics means
that any strong reasoning result obtained in it will be more
meaningful than comparable results in games (e.g. finding
proofs to mathematical conjectures), and could even be

extremely large search space (like Go for example), it also has an
infinite action space. At each step of a proof search, the model must
choose not from a well-behaved finite set of actions, but a complex
and infinite set of tactics, involving exogenous mathematical ter
that have to be generated (e.g., generating a mathem:
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Aside: predicates
VS. propositions

formal mathematics, appears as an interesting game-like
domain to tackle due to its increased scope. Like games,
formal mathematics has an automated way of determining
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Expressing invariants

SoAgS1A1...57_1Ar_1STAT

‘ V.S; (Holding(S;.robot, Si.bozlftle)) ‘
VS; (S;.robot.arms.le ft.resistance > 2)
o

00

e

Goal: get to the door without dropping the bottle.



Problem complexity & choice of abstraction
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What Can Al Do?
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