ONWARY.VRUR]) &
Artificial Intelligence

s

Application: Law and Logic
Programming

Prof. Emma Tosch

3 February 2022

¥ | The University of Vermont

..'

y
l;\

, A g -~ ¥
) i iy)
4 PR 3 . L] B
_",\. ——— A Aood o hive 2

-

YOUGET,AN ATANDAYOU
GET ANVA!

Agenda

Topic: how logic fits in with the bigger picture in Al

« SAT/SMT solvers today é%‘

« History of logic in Al (\'_J

« Focus: Symbolic Al for Law
Prolog

Active research

SAART ot Yoty 5
géT/SMT: how it’s used in real life

Symbolic execution/Test case

generation

Circuit equivalence

. (I\C?imes (sudoku, n-queens) !

“YRunning programs backwards”

AWS |IAM Access Analyzer

S MY Lo

Anaconda package management
Finding bugs in legal code
Google OR-tools

Neural Network Verification Few are

traditional “Al”
domains!

This list crowdsourced via Alastair Donaldson’s tweet: https://twitter.com/afd_icl/status

Wl (o ANy Wovlke odr gl R
How are SAT/SMT solvers useful? g/g{g\ - \,ﬂﬁ

Known: SAT/SMT is NP-Hard - é— Yna O \WX C/\WJ Q;\‘J’

- No known sub-exponential algorithm for solving K

... SO how can we actually use these tools in practice? q/ M (gQ/ ¢ Oj\o
19905 — “phCISG transition” phenomeﬂ(] in SAT pI’Ob|emS e P Q}ﬂ//f)\ww\

« Generate rondoﬂ jiSAT problems in CNF /&

. RQEE? of clause size to number of variables correlates with runtime (P \[(;5 vV 7 V“B A [—fP cv -

« Theme: Al focus on “features of problem instances,” rather than ML focus on “featurgs of data™

- A

History of Logic in Al

Agent-based reasoning ‘
PO S g
roroo™"

« First logical agent-based: McCarthy (1950s-1960s)

« SHRDLU: Winograd, 1971 {\/\V\H;‘ o\&b\lﬁ\
« As an alternative to SQL: 1970s-1980s YUM%

i Law — Topic of this lecture! i

« Agents behavior in terms of declarations rather than procedures (1980s-1990s)

Natural Language

370

ARTICLES

THE BRITISH NATIONALITY ACT
AS A LOGIC PROGRAM

The formalization of legislation and the development of computer systems to
assist with legal problem solving provide a rich domain for developing and
testing artificial-intelligence technology.

M. J. SERGOT, F. SADRI, m . KRIWACZEK, P. HAMMOND, and H. T. CORY

There are essentially two kinds of law, case law, de-
termined by earlier court decisions, and statutes, de-
termined by legislation. Substantial amounts of stat-
utory law are basically definitional in nature and
attempt to define more or less precisely some legal
relationship or concept. The British Nationality Act
1981 [20] defines British citizenship and is a good
example of statutory law. The act embodies all the
characteristics of statutes in general: syntactic com-
plexity, vagueness, and reference to previously en-
acted legislation.

In the course of this article, we will describe how
the text of a large part of the British Nationality Act
1981 was translated into a simple form of logic, and
we will examine some possible applications of this
translation.

The form of logic used is that on which the pro-

gramming language Prolog is based. Later in the arti-

cle, we will describe how our translation of the act
can be executed as a program by an augmented
Prolog system, so that consequences of the act can
be determined mechanically.

Although Prolog logic is severely restricted, it
proved to be sufficiently high level so that our im-
plementation could resemble the style and structure
of the actual text of the act. Such a resemblance is
important because it helps increase confidence in
This work was supported by the Science and Engineering Research Council.

© 1986 ACM 0001-0782/86,/0300-0370 75¢

Communications of the ACM

the accuracy of the implementation and makes the
implementation easier to maintain as the legislation
changes and as case law evolves to augment the
legislation.

Our implementation of the British Nationality Act
1981 was undertaken as an experiment to test the
suitability of Prolog logic for expressing and applying
legislation. The British Nationality Act 1981 was
chosen for this experiment for a number of reasons.
At the time it was first proposed, the act was a con-
troversial piece of legislation that introduced several
new classes of British citizenship. We hoped that
formalization of the various definitions might illumi-
nate some of the issues causing the controversy.
More importantly, the British Nationality Act is rela-
tively self-contained, and free, for the most part, of
many complicating factors that make the problem of
simulating legal reasoning so much more difficult.
Furthermore, at the time of our original implemen-
tation (summer 1983) the act was free of the compli-
cating influence of case law.

A complication that we anticipated was the pres-
ence of vagueness. The act contains such vague
phrases as “being a good character,” “having reason-
able excuse,” and “having sufficient knowledge of
English.” These concepts are not defined in the act
and occur only at the lowest level of detail. At
higher levels, the question of whether a person is a
British citizen depends primarily on concrete, easily

May 1986 Volume 29 Number 5

Famous Application

We believe that the formalization of legislation
and legal reasoning offers potential contributions to
computing technology itself. It should help to dis-
criminate, better than other applications, between
different knowledge representation formalisms and
problem-solving schemes in artificial intelligence.
Moreover, the rules and regulations that govern the
management of institutions and organizations have
exactly the same character as legal provisions. This
suggests, therefore, an unconventional approach to
the construction of software for data-processing ap-
plications. A payroll system, for instance, could be
based directly on tax and sick-pay legislation, could
include a representation of the company pension
scheme, the rules that govern holiday allocation,
and promotion regulations. We have already con-
structed a number of experimental systems dealing
with some of these topics.

Example 1 : Below food table shows the facts, rules, goals and their | L h()td()g a sandwich?
english meanings.

Facts English meanings

food(burger). /I burger is a food
food(sandwich). /I sandwich is a food

food(pizza). /I pizza is a food
lunch(sandwich). /I sandwich is a lunch

dinner(pizza). /] pizza is a dinner

Y oy dow By QY

/l Every food is a meal OR
tmeal(x ODC(A): Anything is a meal if it is a

L 5 &\ (X\ S food
QuebrieslGoaIs Wﬁ& (F)CB

?- food(pizza). /I Is pizza a food?

2- meal(X), lunch(X). {1/1 r\:\(,:?'ll'?h food is meal and

?- dinner(sandwich). /I Is sandwich a dinner?

EXAMPLE - 1 EXPLANATION & MORE

https://athena.ecs.csus.edu/~mei/logicp/prolog/program

Prolog activity

Go to: hitp://tau-prolog.org/sandbox/

| will assign you to random pairs
Select a domain, e.g., CS major requirements or

Encode facts and rules:

https://www.cis.upenn.edu/~matuszek/Concise%20Guides/Concise%20Prolog.html

http://tau-prolog.org/sandbox/
https://www.cis.upenn.edu/~matuszek/Concise%20Guides/Concise%20Prolog.html

« Implicitly all guantifiers be “in front” (“prenex form”) ~ ()
—— T

« Implicitly only universal quantification (requires “Skolemization”)

=

Yo T(xny, V)] ufm—)g
=z

SR TR A - = 2N Ao o
q€r)

oW
10"/*-7

Prolog limitations I j \jg)f/_

Slight detour...

38

ARTICLES

THE EARLY YEARS OF LOGIC

PROGRAMMING

This firsthand recollection of those early days of logic programming traces
the shared influences and inspirations that connected Edinburgh, Scotland,

and Marseilles, France.

ROBERT A. KOWALSKI

The name Prolog is ambiguous, It was originally in-
tended as the name for the programming language de-
veloped by Alain Colmerauer and Phillipe Roussel

in the summer of 1972. The name was suggested by
Roussel’s wife, Jacqueline, as an abbreviation for pro-
grammation en logique. In time, however, this abbrevia-
tion has been used to refer to the concept of logic pro-
gramming in general. It is a confusing notion, as claims
made for the general concept of logic programming do
not always hold for the programming language, Prolog,
and vice versa. In an attempt to minimize such confu-
sion, I shall reserve the term Prolog to refer to the
programming language alone.

This is not the place for an extensive discussion of
what should or should not be regarded as logic program-
ming, a term that is equally ambiguous. However, with-
out wanting to stir further controversy, let me hazard
the following rough characterization: Logic program-
ming shares with mechanical theorem proving the use
of logic to represent knowledge and the use of deduc-
tion to solve problems by deriving logical conse-
quences. However, it differs from mechanical theorem
proving in two distinct but complementary ways: (1) It
exploits the fact that logic can be used to express defi-
nitions of computable functions and procedures; and
(2) it exploits the use of proof procedures that perform
deductions in a goal-directed manner, to run such defi-
nitions as programs.

A consequence of using logic to represent knowledge
is that such knowledge can be understood declaratively.
A consequence of using deduction to derive conse-
quences in a computational manner is that the same
knowledge can also be understood procedurally. Thus,
logic programming allows us to view the same knowl-
edge both declaratively and procedurally.

The most straightforward case of logic programming
is when information is expressed by means of Horn

© 1988 ACM 0001-0782/88/0100-0038 $1.50

Communications of the ACM

clauses and deduction is performed by backwards rea-
soning embedded in resolution [29]. But logic program-
ming can also be understood more generally, for exam-
ple, to include negation by failure [3], set construction
[4, 32], or goal-directed reasoning with equations. The
advantage of the more liberal notion of logic program-
ming is that it points the way for further developments
to encompass richer fragments of logic and give a com-
putational interpretation to a greater variety of proof
procedures.

The liberal notion of logic programming does not in-
clude a number of related uses of logic in programming.
It excludes, for example, systems of constructive logic
in which proofs are interpreted as programs, and it ex-
cludes uses of logic in which computation is construed
model-theoretically as evaluating a formula in an inter-
pretation.

This article is a personal account of some of the early
history of logic programming, ending with my move
from Edinburgh to London in December 1974. The
chronicle is unavoidably biased toward my own recol-
lection of events at the University of Edinburgh. I am
especially conscious that it does not do justice to re-
lated activities that took place during that time at the
Université d’Aix Marseilles.

THE EDINBURGH-MARSEILLES CONNECTION
My first contact with the Marseilles group was a three
or four day visit in the summer of 1971 at the invitation
of Colmerauer, who was then head of the artificial in-
telligence (Al) team at the university. The group, which
consisted of Bob Pasero, Roussel, and Colmerauer, was
developing a natural language question-answering sys-
tem. Roussel and Jean Trudel, a colleague visiting from
the University of Montreal, had read [21], which de-
scribes the SL-resolution theorem prover, and Roussel
was interested in using it for the deductive component
of the question-answering system.

Most of my visit consisted of intensive discussions

January 1988 Volume 31 Number 1

The liberal notion of logic programming does not in-
clude a number of related uses of logic in programming.
It excludes, for example, systems of constructive logic
in which proofs are interpreted as programs, and it ex-
cludes uses of logic in which computation is construed
model-theoretically as evaluating a formula in an inter-
pretation.

Prolog limitations I

« Requires all quantifiers be “in front” (“prenex form”)
« Only universal quantification (requires “Skolemization”)

« Alllogical formulas can be converted to CNF

- _’/ —

« Only some CNF formulas are Horn clauses

oS~— f

Law + Logic: Active Research

v
mmi Denis Merigoux
Programming Languages and the Law 2022 ProLala 2022 Nerig
) @DMerigoux :
Program Accepted presentations Call for submissions Important Dates Q@O AoE (UTC-12h)
3/15] The logi mmi mmunity identified
mportaniUpdi T [3/15] The logic progra Ing co unity identifie
Workshop k d f I H I : d A
The workshop will be held as a hybrid event with full support for remote participation, S OI I Ie ey ne e S 0 r t ra nS atl ng aW I nto CO e .
following the latest update from the main POPL conference. To attend in person, choose Thu 18 Nov 2021 o e . .
“in-person POPL” option from the main registration page, which later will prompt you to Notification of acceptance - defe as I b I I Ity (O r n egat Io n- as—fa I I u re)
select the specific meetings you want to attend. To participate remotely, choose “Virtual — o . N S .
POPL” option which is common to all POPL-week events. Note that in both cases, you will Thu 28 Oct 2021 - unlflcatlon (for deal Ing Wlth Iegal quallflcatlonS)
automatically get all the benefits of “Virtual POPL” option, namely, remote access to all Submission deadline p
POPL-week events as well as the POPL Virtual Workshop. If you are already registered, and — m d I. 1 (m f m f d 1 I g')
wish to either update your information or switch between the in-person and virtual options, o a Itl eS o r So e o r 0 eo nt l C o IC
use “Update Information” option. Submission Link
I 6:03 AM - Jan 31, 2022 - Twitter Web App
Law at large underpins modern society, codifying and governing many aspects of citizens’ daily © https://prolala22.hotcrp.com
lives. Oftentimes, law is subject to interpretation, debate and challenges throughout various courts
and jurisdictions. But in some other areas, law leaves little room for interpretation, and essentially
aims to rigorously describe a computation, a decision procedure or, simply said, an algorithm. Program Committee 2 LI kes
The programming languages community has so far brought very few answers to the problem of
. N g) Sarah Lawsky Program Co-Chair
having a transparent, accountable implementation of computational law. The current state of 5 5
affairs is concerning: in many cases, human-critical systems are implemented using technology Northwestern University
that is several decades old, resulting in e.g. the IRS relying on assembly code from the 60s or its Anised Sigica Q '[‘_1 @ 1\
French counterpart relying on a home-made language from the 90s with tens of thousands of
global variables. For institutions stuck with this unfortunate status quo, consequences are many: :;natha:t Pmtzi’::;am Py
. ot icrosof :
legacy sy_/ste.ms cannot be e\./olved, in spite of hundreds of mllllons of dollf-xrs spent on) & Research, Redmond i
“modernization” budgets; mistakes are made and rarely noticed; automatic analyses remain United States
elusive, meaning policymakers are “flying dark”; and in the worst case, as happened with the
French military pay co-mputatlon, families are on th.e verge of bankruptcy because of mt?orrect Timos Antonopoulos
code. However, there is hope. Recent papers published at PL venues (A Modern Compiler for the Yale University
French Tax Code, CC’21; Catala: a Programming Language for the Law, ICFP’21; Property » .
N N A
conveyances as a programming language, Onward!’19), along with a recent NSF proposal for
. '
https://twitter.com/DMerigoux/status/1488105678799577091
.
-~ - o . A
. g i s . 1
. ’ * *“% <. -
v . - - bt

Defeasibility

Open vs. closed worlds

prolog, homework - if not explicitly true, then false

- Introduces bias in our knowledge base

“Non-montonicty”

ldeq: define some inference

has4dlegs(f) = table(f) \/ chair(f)

...but there is a table here that has one leg!

Unification

Step in resolution for predicate logic

« Algorithm for binding variables in order to “melt” two clauses together in resolution
« Fairly simple without functions; very algorithmic

Hard part in law: generalization vs. specialization, things vs. stuff*

Here is an atomic formula that appears frequently in my
encodings of legal rules:

(Own 70 (Actor 7a) (Stock 7s))

In this example, an Actor can be either a Person or a Corpo-
ration, and Stock is a subsort of Security. The unification
algorithm is required to respect these sorts, although the de-
tails will depend on how the sort hierarchy is defined. Also,
Actor is a count term, while Stock is a mass term which can
have a measure attached to it. For some examples of legal
rules that use mass terms with measures, see [30].

Modal logic

We will cover some modal logics later in the semester:

« Necessity and sufficiency
« Time

« Knowledge (epistemic)

Prolog limitations II - 7L
ldea: define SOW

.ms(f - Irable(f) \/ chair(f)

« ...butthereis a table here tha

“Non-montonicty” = a reasonable way to build a knowledge base with “background
- \
assumptions”

v Airmeet: POPL 2022 X 4=

.PLAVING
C O B8 https://www.airmeet.com/event/83336870-5dde-11ec-82d0-a1d80a53071a?code=eb5aaddd-f518-4007-8a5d-611cc7f0859¢ fr ©® 0 M
¥
POPL 2022
&« LIVE 23:53 ProLala: Research keynote 38 people in session
y peop = O & o0

aw + Og102 ACUTIVE InescecarcC e R
“ @ N Meta & Microsoft 15 Tezos JEXH aWS ssibili @JaneStreet

mute, hide video, share screen, etc.

? GELE] yhar
AN\ POPL 2022 & senecartexisNers, st

Hello, good morning all! May I know if

-/ . .
j h" A et Go gle TweaAs Stag Akita b7 Q OctoML v Phlladelphla there is way to collapse the sponsors'
CouruTATION section?
Denis M OUX
" ting Researcher, Inria - 9 n

@Thorne: That's because here you're just
allowed to listen until your talk is up, at
which point you will see those buttons.

Legal logic programming

Hello, good morning all! May I know if...

I don't think so, but you can put the slides
fullscreen

* Long history of symbolic Al for legal reasoning e L Thorne M

 But distinctive characteristics of legal reasoning OK, Got it

are not well supported out of the box Benls

ing Researcher, Inria
e E.g., counterfactuals, non-monotonic inference, pphigiRs e bl b
5 S . . . ith the "Q&A" logi
deontic modalities, hierarchies of authority e QRATed

* Response: adopt PLs with appropriate language i

L ymas v Bir
features for the problem domain T i Picdemsor Uniers i

hi all, pleasure to be here
* E.g. PROLEG, L4, DCPL, LLD ... i

Good morning!

® e & & g @ Raise hand 1o 2

Necessary features of logic in AI?

« Non-montonicity 5/

 Law of excluded middle é\

« Axiom of choice ,/(J

+ Modal expreSS|ons -%f——' (,\/(\/\ YV U\(QO\W
SO nuss gy lsthey QQA/M\/V
}i\ﬂm\/\ea%

