Example: Interpreting Predicate Formulas

Given a structure \mathcal{A} equipped with the following universe and interpretation function, as well as equality over the naturals and the universe:

$$
\begin{aligned}
& \mathcal{U}_{\mathcal{A}} \triangleq\left\{f_{1}, \ldots, f_{10}\right\} \\
& \llbracket g^{1} \rrbracket_{\mathcal{A}} \triangleq \text { returns the count of legs for the input } \\
& \llbracket P^{1} \rrbracket^{\mathcal{A}} \triangleq \text { is a table } \\
& \llbracket Q^{2} \rrbracket^{\mathcal{A}} \triangleq \text { lamp is on the table } \\
& \llbracket R^{2} \rrbracket_{\mathcal{A}} \triangleq \text { the artisan crafted the furniture } \\
& \llbracket a \rrbracket_{\mathcal{A}} \triangleq \text { Ron Swanson }
\end{aligned}
$$

The tables with the lamps on them are crafted by Ron Swanson.

$$
\forall x((P(x) \wedge Q(x)) \rightarrow R(a, x))
$$

All tables have four legs.

$$
\forall x(P(x) \rightarrow g(x)=4)
$$

Substitution

This can be tricky (both by hand and in code).

$$
\mathcal{A}_{\left[x / x_{0}\right]}(F) \triangleq \text { "replace every free instance of } x \text { with } x_{0} \text { in } F . "
$$

Note: there are many ways to write this (including $\mathcal{A}_{\left[x_{0} / x\right]}(F)$!). (should be clear from context; do not be fraid to ask.)
Easiest method: starting from the innermost bound variables, rename:

$$
P(x) \vee \forall x(\exists x(P(x) \rightarrow Q(x)) \wedge \forall x(R(x)) \wedge S(x))
$$

Equivalence and satisfiability of predicate logic

Recall:

$$
F \equiv G \triangleq \llbracket F \rrbracket_{\mathcal{A}_{1}}=\llbracket G \rrbracket_{\mathcal{A}_{1}} \wedge \cdots \wedge \llbracket F \rrbracket_{\mathcal{A}_{n}}=\llbracket G \rrbracket_{\mathcal{A}_{n}}
$$

Two formulas F and G are equivalent if and only if they evaluate to the same truth value for all suitable assignments.

Two formulas F and G are equivalent if and only if they evaluate to the same truth value for all suitable structures?

$$
\begin{aligned}
F \quad \triangleq & \forall x(P(x, f(x))) \\
& \wedge \forall y \neg P(y, y) \\
& \wedge \forall u \forall v \forall w(P(u, v) \wedge P(v, w) \rightarrow P(u, v))
\end{aligned}
$$

$G \quad \triangleq$ some formula containing the same set of symbols
Easy mode: the formulas have the same surface string (syntax!). Hard mode: the formula is occluded.

Finding SAT vs. Evaluating Predicate Logic

Propositional logic: find a mapping from propositions to truth values to makes the formula true.
Predicate logic: find a structure where the mapping from interpreted variables to truth values makes the formula true.

Logic: searching for a universe, emphasis on core mathematical truths. AI: often have a universe in mind, really: SAT over formula + structure

Even with this information, exhaustive search is hard.
For certain tasks, there is an easier way!

From rewrite rules to inference

Recall:

$$
\begin{aligned}
& \neg \neg F=F \text { (double negation) } \\
& \neg(F \wedge G)=\neg F \vee \neg G(\text { deMorgan's) } \\
& \neg(F \vee G)=\neg F \wedge \neg G(\text { deMorgan's) } \\
& F \wedge(G \vee H)=(F \wedge G) \vee(F \wedge H) \text { (distributive) } \\
& F \vee(G \wedge H)=(F \vee G) \wedge(F \vee H) \text { (distributive) } \\
& F \rightarrow G=\neg F \vee G
\end{aligned}
$$

New ones for predicate logic:

$$
\begin{aligned}
& \neg \forall x(F(x))=\exists x(\neg F(x)) \text { (deMorgan's) } \\
& \neg \exists x(F(x))=\forall x(\neg F(x)) \text { (deMorgan's) }
\end{aligned}
$$

How do we create new knowledge from what we already know, using only syntax, not semantics?

Sequents vs. Implications (Inference vs. Derivations)

$$
\begin{gathered}
F_{1}, \ldots, F_{n} \vdash G \\
\left(F_{1} \wedge \ldots \wedge F_{n}\right) \rightarrow G
\end{gathered}
$$

Example Scenario: I have a proof of $F \rightarrow G$ and I a proof of G, but I want a proof of G, and I can't break apart F or G to get it. How do I produce such a proof?

We can think about a "proof" as datum that ensures the path of our reasoning is correct.

Inference rules

Inference rules are if-statements that let us combine old information into new information.
and elimination
and introduction
or introduction
implication elimination
bottom elimination
not elimination

Inference rules

Some inference rules require the notion of scope. implication introduction
or elimination
not introduction

Inference rules with quantifiers always require scope

Natural deduction: inference rules + scope

For a sequent $F_{1}, \ldots, F_{n} \vdash G, F_{1}, \ldots, F_{n}$ are always in scope, e.g.,

$$
\forall(P(x) \rightarrow Q(x)), \exists x P(x) \vdash \exists Q(x)
$$

Clicker Question

Which of the following lines is incorrect?

Next week, next unit

Next week: Remainder of unit 1 (logic): programming and applications-focused.

Preview of next unit: We will put a pin this for now, but...much of AI classically focuses on search and check. This is the "Hard" part of AI; the "hard" part is often the encoding (knowledge representation).

