From propositions to relations

Let's express in terms of an ontology...

Need to express restrictions on relations

Our restriction:

1. if (table, 0$) \in$ Has4Chairs, then (table, 1$) \notin$ Has4Chairs
2. if $($ table, 1$) \in$ Has4Chairs, then (table, 0$) \notin$ Has4Chairs Is this true over every $f \in$ Furniture, or just for the table?

If $f \in$ Furniture, then either $(f, 0) \in$ Has4Chairs or $(f, 1) \in$ Has4Chairs,
but not both.

Quantifying over sets

- Using a propositional variable is shorter
...but it hides information about the set!
- What do we mean by an arbitrary member of the set?

Set

$$
\forall f(f \in \text { Furniture } \wedge \ldots) \quad \exists f(f \in \text { Furniture } \wedge \ldots)
$$

membership
Relation $\quad \forall f((f, 1) \in F \wedge \ldots) \quad \exists f((f, 1) \in F \wedge \ldots)$
membership
Predicates

$$
\forall f(F(f) \wedge \ldots) \quad \exists f(F(f) \wedge \ldots)
$$

Predicates parameterize propositions.

Predicate logic: Syntax

Predicates compose into formulas via connectives, which are inductively defined. Assume a set of variables $\left\{x_{1}, x_{,} \ldots\right\}$ and predicates $\left\{P_{1}, P_{2}, \ldots\right\}$:

- Atomic formulas: $F \in\left\{T, \perp, P_{1}\left(x_{1}\right), P_{1}\left(x_{2}\right), P_{2}\left(x_{1}\right), P_{2}\left(x_{2}\right), P_{1}\left(x_{3}\right), P_{2}\left(x_{3}\right), P_{3}\left(x_{1}\right), \ldots\right\}$
- Negation: If F is a formula, then $\neg F$ is a formula.
- Disjunction: If F and G are formulas, then $F \vee G$ is a formula.
- Conjunction: If F and G are formulas, then $F \wedge G$ is a formula.
- Implication: If F and G are formulas, then $F \rightarrow G$ is a formula.
- Universal quantification: If x is a variable and F is a formula, then $\forall x(F)$ is a formula.
- Existential quantification: If x is a variable and F is a formula, then $\exists x(F)$ is a formula.

You should be able to recognize syntactically valid formulas.

Free as a bird

Syntax does not say that variables need to be quantified.
Variables that occur outside a quantifier (i.e., \forall or \exists) are said to be free, otherwise they are bound.

$$
\begin{gathered}
P(a) \wedge \forall b(Q(b)) \\
P(a) \wedge \forall b(Q(b) \vee R(a)) \\
\forall a(P(a) \wedge \forall b(Q(b) \vee R(a)))
\end{gathered}
$$

You should recognize free and bound variables.

Example syntactic manipulation

You should be able to manipulate formulas in both propositional and predicate logic using rewrite rules.

If $f \in$ Furniture, then either $(f, 0) \in$ Has4Chairs

$$
\text { or }(f, 1) \in \text { Has4Chairs, }
$$

but not both.
$\forall f \forall f^{\prime} \forall b\left(\left(f=f^{\prime} \wedge(f, b) \in P\right) \rightarrow \neg \exists b^{\prime}(\right.$

Clicker Question

Which of the following is not a valid rewrite of the expression
$\forall f \forall f^{\prime} \forall b\left(\left(f=f^{\prime} \wedge(f, b) \in P\right) \rightarrow \neg \exists b^{\prime}\left(b \neq b^{\prime} \wedge\left(f, b^{\prime}\right) \in P\right)\right)$
A) $\forall f \forall f^{\prime} \forall b\left(\left(f=f^{\prime} \wedge(f, b) \in P\right) \rightarrow \forall b^{\prime} \neg\left(b \neq b^{\prime} \wedge\left(f, b^{\prime}\right) \in P\right)\right)$
B) $\forall f \forall f^{\prime} \forall b\left(\left(f=f^{\prime} \wedge(f, b) \in P\right) \rightarrow \forall b^{\prime}\left(b=b^{\prime} \wedge\left(f, b^{\prime}\right) \notin P\right)\right)$
C) $\forall f \forall f^{\prime} \forall b\left(\neg\left(f=f^{\prime} \wedge(f, b) \in P\right) \vee \neg \exists b^{\prime}\left(b \neq b^{\prime} \wedge\left(f, b^{\prime}\right) \in P\right)\right)$
D) $\forall f \forall f^{\prime} \forall b \forall b^{\prime}\left(\left(f=f^{\prime} \wedge(f, b) \in P\right) \rightarrow\left(b \neq b^{\prime} \wedge\left(f, b^{\prime}\right) \in P\right)\right)$
E) $\forall a \forall b \forall c((a=b \wedge(a, c) \in P) \rightarrow \neg \exists d(c \neq d \wedge(a, d) \in P)))$

Relations, functions, predicates

Recall:

- An ontology is a collection of categories and relations.
- A relation is a pairing between categories.
- We are focusing on a special type of category: a set.
- A relation R on two sets X and Y is any ordered pairing where for $x \in X$ and $y \in Y,(x, y) \in R$.
- A relation can also be written as $R(x)=y$ or $R(x, y)$.

Some relations have special restrictions:

- A function is a relation R such that $\forall x \forall x^{\prime} \forall y \forall y^{\prime}\left(\left(R(x)=y \wedge R\left(x^{\prime}\right)=y^{\prime}\right) \rightarrow\left(y=y^{\prime} \vee x \neq x^{\prime}\right)\right)$, typically written $\forall x \forall x^{\prime}\left(R(x)=R\left(x^{\prime}\right) \rightarrow x=x^{\prime}\right)$.
- A predicate is a function R where $\forall x(R(x) \in\{0,1\})$.

Arity

Relations can be arbitrarily-sized pairs:

$$
\text { (Larry, Moe, Curly) } \notin \text { Triplets }
$$

Relations (including functions and predicates) can be written many argument. When there are k such arguments, we say the relation R is a k-ary relation. k is the arity.

Let P^{k} denote an arbitrary k-ary predicate and f^{k} denote a k-ary function. Let $\left\{x_{1}, x_{2}, \ldots\right\}$ be the set of variables, as before. Then atomic formulas are the set defined by $\left\{T, \perp, P_{1}^{k}\left(t_{1}, \ldots, t_{k}\right), P_{2}^{k^{\prime}}\left(t_{1}, \ldots, t_{k^{\prime}}\right), \ldots\right\}$ and t_{i} is a term, defined to be:

- A variable from the set of variables, or
- A k-ary function from the set of function applied to k terms $\left(f_{i}^{k}\left(t_{1}, \ldots, t_{k}\right)\right)$

Semantics, classically...

- The semantics of predicate logic is defined by a structure $\mathcal{A}=\left\langle\mathcal{U}_{\mathcal{A}}, \mathbb{I} \cdot \rrbracket_{\mathcal{A}}\right\rangle$
- $\mathcal{U}_{\mathcal{A}}$ is the universe: an arbitrary, non-empty set that gives meaning to variables.
- A structure is suitable if $\llbracket \cdot \rrbracket_{\mathcal{A}}$ is defined for every symbol, e.g.:

$$
\begin{aligned}
F & \triangleq \forall x(L(f(x), a) \rightarrow S(x)) \\
\mathcal{U} & \triangleq\left\{\text { carpet, lamp, couch, table, chair }{ }_{1}, \ldots, \text { chair }_{4}\right\} \\
\llbracket a \rrbracket_{\mathcal{A}} & \triangleq 1 \\
\llbracket f \rrbracket_{\mathcal{A}} & \triangleq \text { function to get the number of legs the input has } \\
\llbracket L \rrbracket_{\mathcal{A}} & \triangleq \text { predicate: first is greater than the second } \\
\llbracket S \rrbracket_{\mathcal{A}} & \triangleq \text { predicate: can sit on }
\end{aligned}
$$

- Interpreting predicates: $\mathcal{A}=F$?

Logic is general; we want to be specific

- The deep formalisms here capture extremely general and true things: proof schemata, the notion of equality, etc.
- In AI, we want to be specific.
- Classic example: the "frame problem."

Next class

Inference: combining what we know to learn something new.

