
From propositions to relations

σ

p ≜ The table has four chairs.

q ≜ A painting is on the wall
or a photograph is on the
wall.

r ≜ The computer is not on.

s ≜ If the computer is on,
then it is not dead.

t ≜ If the computer is on,
then the battery is not
dead.

u ≜ The plant is made of
plastic.

Let’s express in terms of an ontology...

(,) ∈ Has4Chairs

1 / 12

Need to express restrictions on relations

Our restriction:

1. if (table, 0) ∈ Has4Chairs, then (table, 1) ̸∈ Has4Chairs

2. if (table, 1) ∈ Has4Chairs, then (table, 0) ̸∈ Has4Chairs

Is this true over every f ∈ Furniture, or just for the table?

If f ∈ Furniture, then either (f , 0) ∈ Has4Chairs

or (f , 1) ∈ Has4Chairs,

but not both.

2 / 12

Quantifying over sets

▶ Using a propositional variable is shorter
...but it hides information about the set!

▶ What do we mean by an arbitrary member of the set?

∀ ∃
“for all” (\forall) “exists” (\exists)

Set
membership

∀f (f ∈ Furniture ∧ . . .) ∃f (f ∈ Furniture ∧ . . .)

Relation
membership

∀f ((f , 1) ∈ F ∧ . . .) ∃f ((f , 1) ∈ F ∧ . . .)

Predicates ∀f (F (f) ∧ . . .) ∃f (F (f) ∧ . . .)

Predicates parameterize propositions.

3 / 12

Predicate logic: Syntax

Predicates compose into formulas via connectives, which are inductively
defined. Assume a set of variables {x1, x, . . .} and predicates
{P1,P2, . . .}:

▶ Atomic formulas:
F ∈ {⊤,⊥,P1(x1),P1(x2),P2(x1),P2(x2),P1(x3),P2(x3),P3(x1), ...}

▶ Negation: If F is a formula, then ¬F is a formula.

▶ Disjunction: If F and G are formulas, then F ∨ G is a formula.

▶ Conjunction: If F and G are formulas, then F ∧ G is a formula.

▶ Implication: If F and G are formulas, then F → G is a formula.

▶ Universal quantification: If x is a variable and F is a formula, then ∀x(F) is a
formula.

▶ Existential quantification: If x is a variable and F is a formula, then ∃x(F) is a
formula.

You should be able to recognize syntactically valid formulas.

4 / 12

Free as a bird
Syntax does not say that variables need to be quantified.

Variables that occur outside a quantifier (i.e., ∀ or ∃) are said to be free,
otherwise they are bound.

P(a) ∧ ∀b (Q(b))

P(a) ∧ ∀b
(
Q(b) ∨ R(a)

)

∀a
(
P(a) ∧ ∀b

(
Q(b) ∨ R(a)

))

You should recognize free and bound variables.

5 / 12

Example syntactic manipulation

You should be able to manipulate formulas in both propositional and
predicate logic using rewrite rules.

If f ∈ Furniture, then either (f , 0) ∈ Has4Chairs

or (f , 1) ∈ Has4Chairs,

but not both.

∀f ∀f ′∀b
(
(f = f ′ ∧ (f , b) ∈ P) → ¬∃b′

())

6 / 12

Clicker Question

Which of the following is not a valid rewrite of the expression

∀f ∀f ′∀b
(
(f = f ′ ∧ (f , b) ∈ P) → ¬∃b′

(
b ̸= b′ ∧ (f , b′) ∈ P

))

A) ∀f ∀f ′∀b
(
(f = f ′ ∧ (f , b) ∈ P) → ∀b′¬

(
b ̸= b′ ∧ (f , b′) ∈ P

))
B) ∀f ∀f ′∀b

(
(f = f ′ ∧ (f , b) ∈ P) → ∀b′

(
b = b′ ∧ (f , b′) ̸∈ P

))
C) ∀f ∀f ′∀b

(
¬ (f = f ′ ∧ (f , b) ∈ P) ∨ ¬∃b′

(
b ̸= b′ ∧ (f , b′) ∈ P

))
D) ∀f ∀f ′∀b∀b′

(
(f = f ′ ∧ (f , b) ∈ P) →

(
b ̸= b′ ∧ (f , b′) ∈ P

))
E) ∀a∀b∀c

(
(a = b ∧ (a, c) ∈ P) → ¬∃d

(
c ̸= d ∧ (a, d) ∈ P)

))

7 / 12

Relations, functions, predicates

Recall:

▶ An ontology is a collection of categories and relations.

▶ A relation is a pairing between categories.

▶ We are focusing on a special type of category: a set.

▶ A relation R on two sets X and Y is any ordered pairing where for
x ∈ X and y ∈ Y , (x , y) ∈ R.

▶ A relation can also be written as R(x) = y or R(x , y).

Some relations have special restrictions:

▶ A function is a relation R such that
∀x∀x ′∀y∀y ′ ((R(x) = y ∧ R(x ′) = y ′) → (y = y ′ ∨ x ̸= x ′)),
typically written ∀x∀x ′ (R(x) = R(x ′) → x = x ′).

▶ A predicate is a function R where ∀x (R(x) ∈ {0, 1}).

8 / 12

Arity

Relations can be arbitrarily-sized pairs:

(Larry, Moe, Curly) ̸∈ Triplets

Relations (including functions and predicates) can be written many
argument. When there are k such arguments, we say the relation R is a
k-ary relation. k is the arity.

Let Pk denote an arbitrary k-ary predicate and f k denote a k-ary function. Let
{x1, x2, . . .} be the set of variables, as before. Then atomic formulas are the set

defined by {⊤,⊥,Pk
1 (t1, . . . , tk),P

k′
2 (t1, . . . , tk′), . . .} and ti is a term, defined

to be:

▶ A variable from the set of variables, or

▶ A k-ary function from the set of function applied to k terms
(f ki (t1, . . . , tk))

9 / 12

Semantics, classically...

▶ The semantics of predicate logic is defined by a structure
A = ⟨UA, [[·]]A⟩

▶ UA is the universe: an arbitrary, non-empty set that gives meaning
to variables.

▶ A structure is suitable if [[·]]A is defined for every symbol, e.g.:

F ≜ ∀x (L(f (x), a) → S(x))

U ≜ {carpet, lamp, couch, table, chair1, . . . , chair4}
[[a]]A ≜ 1

[[f]]A ≜ function to get the number of legs the input has

[[L]]A ≜ predicate: first is greater than the second

[[S]]A ≜ predicate: can sit on

▶ Interpreting predicates: A |= F?

10 / 12

Logic is general; we want to be specific

▶ The deep formalisms here capture extremely general and true things:
proof schemata, the notion of equality, etc.

▶ In AI, we want to be specific.

▶ Classic example: the “frame problem.”

11 / 12

Next class

Inference: combining what we know to learn something new.

12 / 12

	First-Order Predicate Logic
	Syntax

