Last class

Knowledge representation: encoding ontologies.

An ontology is a collection of categories and relations.

First unit: focusing on ontologies that are sets, especially objects.

Today: zooming out with propositional logic.

Propositions

The atomic (indivisible) unit is the proposition:
$p \triangleq$ "Paris is the capital of France."
$q \triangleq$ "Mice chase elephants."
$\begin{array}{ll}\operatorname{brain}(p)=\operatorname{brain}(\text { "Paris is the capital of France.") } & =\text { true } \\ \operatorname{brain}(q)=\operatorname{brain}(\text { "Mice chase elephants.") } & =\text { false }\end{array}$

Interpretation against a Knowledge Base

$\operatorname{brain}(p)=\operatorname{brain}($ "Paris is the capital of France.") $=$ true
What's happening here:

1. Propositions get defined and stored somewhere.
2. Eventually we want to use or reason over propositions:
2.1 Replace propositions with their definitions.
2.2 Check definitions against what we know.

Replace with $\langle K B, \sigma, \llbracket \cdot \rrbracket\rangle$

- KB: Facts (a set of strings).
- σ : A set of propositions.
- $\llbracket \rrbracket \triangleq$ a function from propositions to $\{$ true, false $\}$

Example

KB
The table has four chairs.
A photograph is on the wall.
The computer is on.
The computer battery is dead.
σ
$p \triangleq$ The table has four chairs.
$q \triangleq$ A painting is on the wall or a photograph is on the wall.
$r \triangleq$ The computer is not on.
$s \triangleq$ If the computer is on, then it is not dead.
$t \triangleq$ If the computer is on, then the battery is not dead.
$u \triangleq$ The plant is made of plastic.

Connectives

Propositions compose into formulas via connectives, which are inductively defined:

- Atomic formulas: $F \in\left\{p_{1}, p_{2}, \ldots\right\}$
- Negation: If F is a formula, then $\neg F$ is a formula.
- Disjunction: If F and G are formulas, then $F \vee G$ is a formula.
(These are the only required connectives, but for readability...)
- Conjunction: If F and G are formulas, then $F \wedge G$ is a formula.
- Implication: If F and G are formulas, then $F \rightarrow G$ is a formula.

You should be able to recognize syntactically valid formulas.

Clicker Question

Let the set of propositions be $\left\{p_{i} \mid i \in \mathbb{N}\right\}$ and a set of formulas be $\left\{F_{i} \mid i \in \mathbb{N}\right\}$.

Which of the following is not a formula?
A) $\neg\left(\left(p_{1} \rightarrow p_{2}\right) \rightarrow\left(\neg p_{2} \rightarrow \neg p_{1}\right)\right)$
B) $p_{1}, p_{2} \rightarrow r$
C) $\left(p_{1} \wedge p 2\right) \rightarrow \neg\left(\neg p_{1} \vee \neg p_{2}\right)$
D) $F_{1} \wedge\left(p_{1} \vee p_{2}\right)$
E) $F_{1} \rightarrow F_{2} \rightarrow F_{3}$

Equivalence?

$$
\begin{aligned}
& F \wedge G \triangleq \neg(\neg F \vee \neg G) \\
& F \rightarrow G \triangleq \neg F \vee G
\end{aligned}
$$

- Right now, these are just syntactic rewrites:

$$
\neg F \vee \neg(\neg G \vee \neg H)
$$

- They also happen have an intuitive meaning.

Classically...

- All propositions have a truth value of 0 or 1 .
- An assignment \mathcal{A} is a mapping from propositions to truth values.
- We evaluate formulas down to truth values using assignment \mathcal{A} (i.e., $\llbracket \cdot \rrbracket_{\mathcal{A}}:$ formulas $\rightarrow\{0,1\}$) and the rules:

F_{1}	F_{2}	$\neg F_{1}$	$F_{1} \vee F_{2}$	$F_{1} \wedge F_{2}$	$F_{1} \rightarrow F_{2}$

Truth tables

$$
\text { Let } F=p_{1} \vee\left(p_{2} \wedge \neg p_{2}\right) \text { and } \mathcal{A}=\left\{p_{1} \mapsto 0 ; p_{2} \mapsto 1\right\} . \text { Find } \llbracket F \rrbracket_{\mathcal{A}}
$$

Inputs	Subexpressions	Output		
p_{1}	p_{2}	$\neg p_{2}$	$p_{2} \wedge \neg p_{2}$	$p_{1} \vee\left(p_{2} \wedge \neg p_{2}\right)$

You should know how to evaluate formulas using truth tables and identify inputs, subexpressions, and outputs.

Syntactic vs. Semantic true and false

Observe: $\llbracket p_{2} \wedge \neg p_{2} \rrbracket_{\mathcal{A}}=0$ for all possible \mathcal{A}.
It would be nice to replace $p_{2} \wedge \neg p_{2}$ with 0 in $p_{1} \vee\left(p_{2} \wedge \neg p_{2}\right)$:

$$
p_{1} \vee 0
$$

Problem: This is not valid formula syntax!
Solution: add two special values to our Atomic formulas:

$$
F \in\left\{\top, \perp, p_{1}, p_{2}, \ldots\right\}
$$

such that:

$$
\llbracket \rrbracket^{\top} \rrbracket_{\mathcal{A}}=1 \quad \llbracket \perp \rrbracket_{\mathcal{A}}=0
$$

Equivalence

$$
F \equiv G \triangleq \llbracket F \rrbracket_{\mathcal{A}_{1}}=\llbracket G \rrbracket_{\mathcal{A}_{1}} \wedge \cdots \wedge \llbracket F \rrbracket_{\mathcal{A}_{n}}=\llbracket G \rrbracket_{\mathcal{A}_{n}}
$$

Two formulas F and G are equivalent if and only if they evaluate to the same truth value for all suitable assignments.

- A suitable assignment contains truth values for all of the propositions (atomic formulas) used in a formula.
- How many possible assignments?

You should know how to test whether two formulas are equivalent.

Equivalence example: disjunction and implication

Check syntactic rewrite against "intuitive" definitions:

Inputs	Output 1	Subexpressions	Output 2	
p_{1}	p_{2}	$p_{1} \wedge p_{2}$	$\neg p_{1} \quad \neg p_{2}$	$\neg\left(\neg p_{1} \vee \neg p_{2}\right)$

$p_{1} \quad p_{2} \quad p_{1} \rightarrow p_{2} \quad \neg p_{1} \quad \neg p_{1} \vee p_{2}$

Scenarios important enough to have their own names

1. If \mathcal{A} is suitable for F and $\llbracket F \rrbracket_{\mathcal{A}}=1$, then we say \mathcal{A} models F, written $\mathcal{A} \models F$.
2. If all possible $\mathcal{A} \models F$, then F is valid or a tautology.
3. If there are no suitable assignments \mathcal{A} such that $\mathcal{A} \vDash F$, then F is unsatisfiable or a contradiction.
4. If there is at least one possible \mathcal{A} such that $\mathcal{A} \models F$, then F is satisfiable.

You should know the definitions of valid/tautology, unsatisfiable/contradiction, and satisfiable.

Boolean satisfiability (SAT)

Problem: find an assignment \mathcal{A} such that $\llbracket F \rrbracket_{\mathcal{A}}=1$.
Naive solution:

1. Enumerate all possible assignments for $F, \mathbb{A}=\left\{\mathcal{A}_{1}, \ldots, \mathcal{A}_{n}\right\}$.
2. For each $\mathcal{A}_{i} \in \mathbb{A}$, if $\llbracket F \rrbracket_{\mathcal{A}_{i}}=1$, return \mathcal{A}_{i}.
3. If no such assignment exists, return UNSAT.

Let $F=p_{1} \vee\left(p_{2} \wedge \neg p_{2}\right)$. Find a satisfying assignment for \mathcal{A} :

p_{1}	p_{2}	$\neg p_{2}$	$p_{2} \wedge \neg p_{2}$	$p_{1} \vee\left(p_{2} \wedge \neg p_{2}\right)$
0	1	0	0	0

(3-)SAT is in NP

Boolean satisfiability is the canonical NP-complete problem:

- NP-Complete: it requires as many resources as the most resource-hungry problems in NP, but no more.
- Solutions can be checked in polynomial time (function of inputs, i.e., propositions).
- Solutions may need up to exponential time to be found.

Conjunctive Normal Form (CNF)

We convert formulas to a normalized form to make things easier.

$$
\begin{gathered}
\left(p_{1} \vee p_{2} \vee p 3\right) \wedge\left(p_{2} \vee p_{4} \vee \neg p_{5}\right) \wedge\left(\neg p_{1} \vee p_{6}\right) \\
\left(\neg p_{1} \vee \neg p_{2}\right) \wedge\left(\neg p_{2} \vee \neg p_{3} \vee p_{4}\right) \wedge p_{5}
\end{gathered}
$$

1. Rewrite $F \rightarrow G$ as $\neg F \vee G$.
2. Push all negation to atomic formulas using rewrites (future inference rules, theorems, and axioms).
3. Apply distributivity laws.

You do not need to know the specifics, just that it is algorithmic.

Common rewrite rules

Conversion to CNF uses common rewrite rules:

- $\neg \neg F=F$ (double negation)
- $\neg(F \wedge G)=\neg F \vee \neg G$ (deMorgan's)
- $\neg(F \vee G)=\neg F \wedge \neg G$ (deMorgan's)
- $F \wedge(G \vee H)=(F \wedge G) \vee(F \wedge H)$ (distributive)
- $F \vee(G \wedge H)=(F \vee G) \wedge(F \vee H)$ (distributive)

You should know and recognize these transformations.

Horn Formulas

A formula is said to be a Horn formula iff it is in CNF and each clause has at most one positive atomic formula (proposition).

$$
\begin{gathered}
\left(p_{1} \wedge p_{2} \wedge p 3\right) \vee\left(p_{2} \wedge p_{4} \wedge \neg p_{5}\right) \vee\left(\neg p_{1} \wedge p_{6}\right) \\
\left(p_{1} \vee p_{2} \vee p 3\right) \wedge\left(p_{2} \vee p_{4} \vee \neg p_{5}\right) \wedge\left(\neg p_{1} \vee p_{6}\right) \\
\left(\neg p_{1} \vee \neg p_{2}\right) \wedge\left(\neg p_{2} \vee \neg p_{3} \vee p_{4}\right) \wedge p_{5}
\end{gathered}
$$

There exists an efficient algorithm for Horn-SAT.

You should be able to recognize Horn formulas.

Complexity vs. Algorithms vs. AI

How is this an Al problem?

- Complexity theory: categorize into equivalence classes.
- If we had an efficient solution for 3-SAT, what other problems could we use it to solve?
- Tries to do this for arbitrary syntactically correct formulas.
- Algorithms: find a solution to an arbitrary problem instance.
- For problems of a certain form, can we find an efficient algorithm that is correct?
- Tries to do this for specific subclasses of syntactically correct formulas.
- AI: find a solution that is correct/fast for most of the problems, most of the time.
- Can we identify common problem features to help us solve our problems?
- Okay to sometimes be slower and/or incorrect.

Using problem features

One step toward "looking at the data." Example in SAT:

- "Unit clauses."
- Ordering by clause size.
- Literals (an atomic formula or its negation) that are always "the same."
- Ordering by number of positive literals (an atomic formula).

Key difference from machine learning: "data" here are the problem instances, not the inputs.

Key algorithmic technique: early stopping.
You should be able to recognize the difference between features of the input data and features of a problem space.

Semantics: giving meaning to syntax

Recall: $\llbracket \rrbracket \triangleq$ a function from propositions to $\{$ true, false $\}$

Now: $\llbracket \|_{\langle K B, \sigma\rangle}:$ formulas $\rightarrow\{1,0\}$

F	$\llbracket F \rrbracket$
p_{i}	if $\sigma\left(p_{i}\right) \in K B$ then 1 else 0
$\neg p_{i}$	if $\sigma\left(p_{i}\right) \notin K B$ then 1 else 0
$F \vee G$	if $\llbracket F \rrbracket$ then 1 else $\llbracket G \rrbracket$
$F \wedge G$	if $\llbracket F \rrbracket$ then $\llbracket G \rrbracket$ else 0
$F \rightarrow G$	if $\llbracket F \rrbracket$ then $\llbracket G \rrbracket$ else 1

Example

KB
The table has four chairs.
A photograph is on the wall.
The computer is on.
The computer battery is dead.
σ
$p \triangleq$ The table has four chairs.
$q \triangleq$ A painting is on the wall or a photograph is on the wall.
$r \triangleq$ The computer is not on.
$s \triangleq$ If the computer is on, then it is not dead.
$t \triangleq$ If the computer is on, then the battery is not dead.
$u \triangleq$ The plant is made of plastic.

Next class

Getting more expressive and using an ontology with predicate logic.

