Last class

Knowledge representation: encoding ontologies.

An ontology is a collection of *categories* and *relations*.

First unit: focusing on ontologies that are sets, especially objects.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Today: zooming out with propositional logic.

Propositions

The atomic (indivisible) unit is the proposition:

 $p \triangleq$ "Paris is the capital of France." $q \triangleq$ "Mice chase elephants."

brain(p) = brain("Paris is the capital of France.") = truebrain(q) = brain("Mice chase elephants.") = false

Interpretation against a Knowledge Base

brain(p) = brain("Paris is the capital of France.") = true

What's happening here:

- 1. Propositions get defined and stored somewhere.
- 2. Eventually we want to use or reason over propositions:
 - 2.1 Replace propositions with their definitions.
 - 2.2 Check definitions against what we know.

Replace with $\langle KB, \sigma, \llbracket \cdot \rrbracket \rangle$

- ► KB: Facts (a set of strings).
- σ : A set of propositions.
- $\llbracket \cdot \rrbracket \triangleq$ a function from propositions to $\{true, false\}$

Example

 σ

- $p \triangleq$ The table has four chairs.
- $q \triangleq A$ painting is on the wall or a photograph is on the wall.
- $r \triangleq$ The computer is not on.
- $s \triangleq$ If the computer is on, then it is not dead.
- $t \triangleq$ If the computer is on, then the battery is not dead.
- $u \triangleq$ The plant is made of plastic.

Connectives

Propositions compose into *formulas* via *connectives*, which are *inductively* defined:

- Atomic formulas: $F \in \{p_1, p_2, \ldots\}$
- Negation: If F is a formula, then $\neg F$ is a formula.
- Disjunction: If F and G are formulas, then $F \lor G$ is a formula.

(These are the only *required* connectives, but for readability...)

- Conjunction: If F and G are formulas, then $F \wedge G$ is a formula.
- Implication: If F and G are formulas, then $F \rightarrow G$ is a formula.

You should be able to recognize syntactically valid formulas.

Clicker Question

Let the set of propositions be $\{p_i \mid i \in \mathbb{N}\}$ and a set of formulas be $\{F_i \mid i \in \mathbb{N}\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Which of the following is not a formula?

A)
$$\neg ((p_1 \rightarrow p_2) \rightarrow (\neg p_2 \rightarrow \neg p_1))$$

B) $p_1, p_2 \rightarrow r$
C) $(p_1 \land p_2) \rightarrow \neg (\neg p_1 \lor \neg p_2)$
D) $F_1 \land (p_1 \lor p_2)$
E) $F_1 \rightarrow F_2 \rightarrow F_3$

Equivalence?

$$F \wedge G \triangleq \neg (\neg F \lor \neg G)$$

 $F \rightarrow G \triangleq \neg F \lor G$

Right now, these are just syntactic rewrites:

$$\neg F \lor \neg (\neg G \lor \neg H)$$

They also happen have an intuitive meaning.

Classically...

- All propositions have a *truth value* of 0 or 1.
- An assignment A is a mapping from propositions to truth values.
- ▶ We evaluate formulas down to truth values using assignment \mathcal{A} (i.e., $\llbracket \cdot \rrbracket_{\mathcal{A}}$: formulas $\rightarrow \{0, 1\}$) and the rules:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Truth tables

Let $F = p_1 \lor (p_2 \land \neg p_2)$ and $\mathcal{A} = \{p_1 \mapsto 0; p_2 \mapsto 1\}$. Find $\llbracket F \rrbracket_{\mathcal{A}}$.

Inputs	Sube	xpressions	Output
<i>p</i> ₁ <i>p</i> ₂	$\neg p_2$	$p_2 \wedge \neg p_2$	$p_1 \lor (p_2 \land \neg p_2)$

You should know how to evaluate formulas using truth tables and identify inputs, subexpressions, and outputs.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Syntactic vs. Semantic true and false

Observe: $\llbracket p_2 \wedge \neg p_2 \rrbracket_{\mathcal{A}} = 0$ for all possible \mathcal{A} .

It would be nice to replace $p_2 \land \neg p_2$ with 0 in $p_1 \lor (p_2 \land \neg p_2)$:

 $p_1 \lor 0$

Problem: This is not valid formula syntax! Solution: add two special values to our Atomic formulas:

$$F \in \{\top, \bot, p_1, p_2, \ldots\}$$

such that:

$$\llbracket \top \rrbracket_{\mathcal{A}} = 1 \quad \llbracket \bot \rrbracket_{\mathcal{A}} = 0$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Equivalence

$$F \equiv G \triangleq \llbracket F \rrbracket_{\mathcal{A}_1} = \llbracket G \rrbracket_{\mathcal{A}_1} \land \cdots \land \llbracket F \rrbracket_{\mathcal{A}_n} = \llbracket G \rrbracket_{\mathcal{A}_n}$$

Two formulas F and G are equivalent if and only if they evaluate to the same truth value for all *suitable* assignments.

- A suitable assignment contains truth values for all of the propositions (atomic formulas) used in a formula.
- How many possible assignments?

You should know how to test whether two formulas are equivalent.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Equivalence example: disjunction and implication

Check syntactic rewrite against "intuitive" definitions:

Inp	uts	Output 1	Sube	xpressions	Output 2
p_1	<i>p</i> ₂	$p_1 \wedge p_2$	$\neg p_1$	$\neg p_2$	$\neg (\neg p_1 \lor \neg p_2)$

 $p_1 \quad p_2 \quad p_1 \rightarrow p_2 \quad \neg p_1 \qquad \neg p_1 \lor p_2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Scenarios important enough to have their own names

- 1. If \mathcal{A} is suitable for F and $\llbracket F \rrbracket_{\mathcal{A}} = 1$, then we say \mathcal{A} models F, written $\mathcal{A} \models F$.
- 2. If all possible $\mathcal{A} \models F$, then F is valid or a tautology.
- 3. If there are no suitable assignments A such that $A \models F$, then F is *unsatisfiable* or a *contradiction*.
- 4. If there is at least one possible A such that $A \models F$, then F is satisfiable.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

You should know the definitions of valid/tautology, unsatisfiable/contradiction, and satisfiable.

Boolean satisfiability (SAT)

Problem: find an assignment A such that $\llbracket F \rrbracket_A = 1$. Naive solution:

- 1. Enumerate all possible assignments for F, $\mathbb{A} = \{\mathcal{A}_1, \dots, \mathcal{A}_n\}$.
- 2. For each $A_i \in \mathbb{A}$, if $\llbracket F \rrbracket_{A_i} = 1$, return A_i .
- 3. If no such assignment exists, return UNSAT.

<i>p</i> ₁	<i>p</i> ₂	$\neg p_2$	$p_2 \wedge \neg p_2$	$p_1 \lor (p_2 \land \neg p_2)$
0	1	0	0	0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Boolean satisfiability is the canonical NP-complete problem:

- NP-Complete: it requires as many resources as the most resource-hungry problems in NP, but no more.
- Solutions can be checked in polynomial time (function of inputs, i.e., propositions).
- Solutions may need up to exponential time to be found.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conjunctive Normal Form (CNF)

We convert formulas to a normalized form to make things easier.

$$egin{aligned} (p_1 ee p_2 ee p_3) \wedge (p_2 ee p_4 ee
eg p_5) \wedge (
eg p_1 ee p_6) \ (
eg p_1 ee
eg p_2) \wedge (
eg p_2 ee
eg p_3 ee p_4) \wedge p_5 \end{aligned}$$

- 1. Rewrite $F \to G$ as $\neg F \lor G$.
- 2. Push all negation to atomic formulas using rewrites (future inference rules, theorems, and axioms).
- 3. Apply distributivity laws.

You do not need to know the specifics, just that it is algorithmic.

Common rewrite rules

Conversion to CNF uses common rewrite rules:

You should know and recognize these transformations.

Horn Formulas

A formula is said to be a *Horn formula* iff it is in CNF and each *clause* has at most one positive atomic formula (proposition).

$$(p_1 \land p_2 \land p_3) \lor (p_2 \land p_4 \land \neg p_5) \lor (\neg p_1 \land p_6)$$
$$(p_1 \lor p_2 \lor p_3) \land (p_2 \lor p_4 \lor \neg p_5) \land (\neg p_1 \lor p_6)$$
$$(\neg p_1 \lor \neg p_2) \land (\neg p_2 \lor \neg p_3 \lor p_4) \land p_5$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

There exists an efficient algorithm for Horn-SAT.

You should be able to recognize Horn formulas.

Complexity vs. Algorithms vs. Al

How is this an AI problem?

Complexity theory: categorize into equivalence classes.

- If we had an efficient solution for 3-SAT, what other problems could we use it to solve?
- Tries to do this for *arbitrary* syntactically correct formulas.

Algorithms: find a solution to an arbitrary problem instance.

- For problems of a certain form, can we find an efficient algorithm that is correct?
- Tries to do this for *specific* subclasses of syntactically correct formulas.

Al: find a solution that is correct/fast for most of the problems, most of the time.

Can we identify common problem features to help us solve our problems?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Okay to sometimes be slower and/or incorrect.

Using problem features

One step toward "looking at the data." Example in SAT:

- "Unit clauses."
- Ordering by clause size.
- Literals (an atomic formula or its negation) that are always "the same."
- Ordering by number of *positive literals* (an atomic formula).

Key difference from machine learning: "data" here are the **problem instances**, not the inputs.

Key algorithmic technique: early stopping. You should be able to recognize the difference between features of the input data and features of a problem space.

Semantics: giving meaning to syntax

Recall: $\llbracket \cdot \rrbracket \triangleq$ a function from propositions to {*true*, *false*}

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Now: $\llbracket \cdot \rrbracket_{\langle KB, \sigma \rangle}$: formulas $\rightarrow \{1, 0\}$		
F	[[<i>F</i>]]	
p _i	if $\sigma(p_i) \in KB$ then 1 else 0	
$\neg p_i$	if $\sigma(p_i) ot\in KB$ then 1 else 0	
$F \lor G$	if [[<i>F</i>]] then 1 else [[<i>G</i>]]	
$F \wedge G$	if [[<i>F</i>]] then [[<i>G</i>]] else 0	
$F \rightarrow G$	if [[F]] then [[G]] else 1	

Example

 σ

- $p \triangleq$ The table has four chairs.
- $q \triangleq A$ painting is on the wall or a photograph is on the wall.
- $r \triangleq$ The computer is not on.
- $s \triangleq$ If the computer is on, then it is not dead.
- $t \triangleq$ If the computer is on, then the battery is not dead.
- $u \triangleq$ The plant is made of plastic.

Next class

Getting more expressive and using an ontology with predicate logic.

