CS 295A/395D:

Artificial Intelligence

Elementary Game Theory

Prof. Emma Tosch
30 March 2022

Agenda

Review decision theory
Elementary game theory

- Optimum vs. optimal solutions
- Strategies
- Vocabulary

Logistics

- BB theory assignment out today
- Exam through game theory
- Temporal reasoning pushed to next unit
- Exam next Friday (April 8)
- Next unit: temporal reasoning and program synthesis
- Removed machine learning

Note: "decision tree" also refers to a classification algorithm in machine learning and is completely different from the type of decision tree we will talk about here.

Recap: Decision Theory

We can express taking actions in a world with uncertainty via decision trees

Decisions trees are temporally-ordered nodes where each level corresponds to alternating:

- Decision nodes - state of the system; outgoing edges represent different actions
- Chance nodes - probability distributions over outcomes; outgoing edges represent reachable states with some probability
- Reward nodes - utility obtained from following the path

Recap: Maximize expected utility

$$
E U\left[a \mid e_{1}, e_{2}, \ldots\right]=\sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid a, e_{1}, e_{2}, \ldots\right) U\left(s^{\prime}\right)
$$

Best action is the action a that maximizes

$$
E U\left[a \mid e_{1}, e_{2}, \ldots\right]
$$

Sum of the utility of actions taken.

Recap: Comparing actions

$$
E U\left[a \mid e_{1}, e_{2}, \ldots\right]=\sum_{s^{\prime}} P\left(S_{t+1}=s^{\prime} \mid a, e_{1}, e_{2}, \ldots\right) U\left(s^{\prime}\right)
$$

Probability mass function - over all sources of uncertainty associated with this action.

Utility function

- Basic actions: reward
- Actions with subsequent actions with uncertain outcomes: EU of those actions

T_{1} gives us no information

$$
\begin{aligned}
E U\left[C_{1} \mid T_{1}=+\right]= & P\left(C_{1}=+\mid T_{1}=+\right)\left(\operatorname{cost}\left(C_{1}\right)+\operatorname{cost}\left(T_{1}\right)\right) \\
& +P\left(C_{1}=-\mid T_{1}=+\right)\left(\operatorname{cost}\left(C_{1}\right)+\operatorname{repair}\left(C_{1}\right)+\operatorname{cost}\left(T_{1}\right)\right)
\end{aligned}
$$

$$
E U\left[C_{2} \mid T_{1}=+\right]
$$

$$
\begin{aligned}
E U\left[C_{1} \mid T_{1}=+\right]= & P\left(C_{1}=+\mid T_{1}=+\right)\left(\operatorname{cost}\left(C_{1}\right)+\operatorname{cost}\left(T_{1}\right)\right) \\
& +P\left(C_{1}=-\mid T_{1}=+\right)\left(\operatorname{cost}\left(C_{1}\right)+\operatorname{repair}\left(C_{1}\right)+\operatorname{cost}\left(T_{1}\right)\right)
\end{aligned}
$$

Deterministically

 choose the car with higher expected utility given $\mathrm{T}_{1}=+$$$
E U\left[C_{2} \mid T_{1}=+\right]=P\left(C_{2}=+\right)\left(\operatorname{cost}\left(C_{2}\right)+\operatorname{cost}\left(T_{1}\right)\right)+P\left(C_{2}=-\right)\left(\operatorname{cost}\left(C_{2}\right)+\operatorname{repair}\left(C_{2}\right)+\operatorname{cost}\left(T_{1}\right)\right)
$$

$$
E U\left[T_{1}\right]=P\left(T_{1}=+\right) E U\left(C_{1} \mid T_{1}=+\right)+P\left(T_{1}=-\right) U\left(T_{1}=-\right)
$$

If we deterministically choose C_{1} when $\mathrm{T}_{1}=+, \ldots$

$$
E U\left[T_{1}\right]=P\left(T_{1}=+\right) E U\left(C_{1} \mid T_{1}=+\right)+P\left(T_{1}=-\right) U\left(T_{1}=-\right)
$$

$$
E U\left[T_{1}\right]=P\left(T_{1}=+\right) E U\left(C_{1} \mid T_{1}=+\right)+P\left(T_{1}=-\right) U\left(T_{1}=-\right)
$$

$$
\begin{aligned}
E U\left[T_{1}\right]=P\left(T_{1}=+\right) E U\left(C_{1} \mid T_{1}=+\right)+P\left(T_{1}=-\right) E U\left(C_{2} \mid T_{1}=\right. & -) \\
& \text { If we deterministically choose } \mathrm{C}_{2} \text { when } \mathrm{T}_{1}=-, \ldots
\end{aligned}
$$

When uncertainty comes from another agent's actions

Car example: taking an action in one branch closes off possibilities in another

- Randomness comes from
- Epistemic uncertainty about effects of past actions (e.g., accuracy of test results)
- Epistemic uncertainty about future state (e.g., quality of car)

Consider the case when randomness comes from another agent's actions...

Example: Prisoner's Dilemma

You (agent P) and an accomplice (agent Q) have been arrested for a crime...

But Q also knows all this and must make
the same choices...

Example: Prisoner's Dilemma

You (agent P) and an accomplice (agent Q) have been arrested for a crime...

Both parties know this

Example: Prisoner's Dilemma

P and Q have been arrested for a crime and separated for in Utility function:
Collective cost? the choice of whether or not to confess and each action is as. You don't know how your accomplice will act. What do you do?

	P silent	Ptalks
$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\omega}}$	$(0,0)$	$(-2,-5)$
$\stackrel{\rightharpoonup}{\omega}$		
σ	$(-5,-2)$	$(-10,-10)$

Both parties know this matrix

Example: Prisoner's Dilemma

P and Q have been arrested for a crime and separated for in
Utility function:
Collective cost?
the choice of whether or not to confess and each action is as. You don't know how your accomplice will act. What do you do?

P silent

P talks
-7 Both choose silent if both are using the same utility function

Example: Prisoner's Dilemma

P and Q have been arrested for a crime and separated for in
Utility function:
Collective cost?
the choice of whether or not to confess and each action is as. You don't know how your accomplice will act. What do you do?

P silent

Ptalks

-7

What if one uses a different utility function?

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and
Utility function:
Individual Cost? interrogation. You have the choice of whether or not to confe associated with a cost. You don't know how your accomplice will do?

	P silent	P talks
$\stackrel{\text { H }}{\stackrel{\text { ¢ }}{\sim}}$	$(0,0)$	$(-2,-5)$
$\stackrel{\sim}{\square}$	$(-5,-2)$	(-10, -10)

Both parties know this matrix

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and
Utility function:
Individual cost? interrogation. You have the choice of whether or not to confe associated with a cost. You don't know how your accomplice will do?

P talks

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and
Utility function:
Individual cost? interrogation. You have the choice of whether or not to confe associated with a cost. You don't know how your accomplice will do?

-2-10

Both parties know this matrix

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and
Utility function: Individual Cost? interrogation. You have the choice of whether or not to confe associated with a cost. You don't know how your accomplice will do?

Both parties know this matrix

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and
Local reasoning, rather than global interrogation. You have the choice of whether or not to confe associated with a cost. You don't know how your accomplice will

Example: Prisoner's Dilemma
You and an accomplice have beer interrogation. You have You (P) talk for a crime and Local reasoning, rather than global associated with a cost.
do?
\qquad Q talks
You (P) stay silent
 E

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and
Local reasoning, rather than global interrogation. You have the choice of whether or not to confe associated with a cost. You don't know how your accomplice will

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you

Example: Prisoner's Dilemma

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

	P silent	$\begin{aligned} & \text { P talks } \\ & (-2-5) \end{aligned}$	
$\stackrel{\text { H }}{\text { H }}$	$(0,0)$		
$\stackrel{\sim}{\sim}$	$(-5,-2)$	(-10,	10)

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and s interrogation. You have the choice of whether or not to confess associated with a cost. You don't know how your accomplice will

Consider a different payoff matrix do?

	P silent	P talks
	$(-2,-2)$	(0, -15)
\approx	$(-15,0)$	$(-10,-10)$

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and s interrogation. You have the choice of whether or not to confess

Assume Q uses collective utility, but P uses individual utility... associated with a cost. You don't know how your accomplice will ¿ do?

P silent

-10

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and se

What if Q knows P's utility function and decides to mimic? interrogation. You have the choice of whether or not to confess associated with a cost. You don't know how your accomplice will act. Whan un you do?

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and se

What if Q knows P's utility function and decides to mimic? interrogation. You have the choice of whether or not to confess associated with a cost. You don't know how your accomplice will act. Whan un you do?

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

	P silent	P talks
$\stackrel{ \pm}{\stackrel{\rightharpoonup}{ \pm}}$	$(-2,-2)$	(0, -15)
$\xrightarrow[0]{\text { \% }}$	$(-15,0)$	$(-10,-10)$

Incentivize talking

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and
Local reasoning, rather than global interrogation. You have the choice of whether or not to confe associated with a cost. You don't know how your accomplice will do?

Incentivize talking

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

Incentivize talking

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

Incentivize talking

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

Incentivize talking

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

(0, -15)
$(-10,-10)$

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?
P silent P talks

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?
P silent
$\stackrel{\rightharpoonup}{\text { 㐅}} \underset{=}{(} \quad(-2,-2)$
$(-15,0)$

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?
P silent
$\stackrel{\rightharpoonup}{\text { 㐅}} \quad(-2,-2)$
$(-15,0)$

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

Incentivize talking

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

	P silent
$\begin{aligned} & \stackrel{\rightharpoonup}{\bar{v}} \\ & \stackrel{\rightharpoonup}{\bar{\omega}} \\ & 0 \end{aligned}$	$(-2,-2)$
$\frac{\stackrel{n}{\square}}{\stackrel{\rightharpoonup}{0}}$	$(-15,0)$

P talks

$$
(0,-15)
$$

$$
(-10,-10)
$$

Example: 2-finger Morra

Choose between 1 and 2 fingers. P wins if sum is even. Q wins if sum is odd. Loser pays the winner.

P plays 1
$(+2,-2)$
$(-3,+3)$

P plays 2
$(-3,+3)$
$(+4,-4)$

Example: 2-finger Morra

Choose between 1 and 2 fingers. P wins if sum is even. Q wins if sum is odd. Loser pays the winner.

P plays 1
P plays 2
0
0

0
0

Example: 2-finger Morra

Choose between 1 and 2 fingers. P wins if sum is even. Q wins if sum is odd. Loser pays the winner.

n n $\frac{n}{0}$ 0 0 N n n 0

P plays 1
$+2$
-3

Example: 2-finger Morra

Choose between 1 and 2 fingers. P wins if sum is even. Q wins if sum is odd. Loser pays the winner.

Example: 2-finger Morra

Choose between 1 and 2 fingers. P wins if sum is even. Q wins if pays the winner.

P plays 2
$(+2,-2)$
$(-3,+3)$

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

	P silent	Ptalks
$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\omega}}$	$(-4,-4)$	$(0,-6)$
$\stackrel{\rightharpoonup}{\bar{\omega}}$		
σ	$(-5,-2)$	$(-10,-10)$

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

	P silent	Ptalks
$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\omega}}$	$(-4,-4)$	$(0,-6)$
$\stackrel{\rightharpoonup}{\bar{\omega}}$		
σ	$(-5,-2)$	$(-10,-10)$

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

	P silent	P talks
$\stackrel{\rightharpoonup}{\omega}$	$(-4,-4)$	$(0,-6)$
$\stackrel{\omega}{\omega}$		
σ	$(-5,-2)$	$(-10,-10)$

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

No free ride for \mathbf{Q}

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

$\begin{aligned} & \stackrel{\rightharpoonup}{\bar{D}} \\ & \stackrel{\rightharpoonup}{\bar{\omega}} \\ & 0 \end{aligned}$		P talks
	$(-4,-4)$	$(0,-6)$
\%	$(-5,-2)$	$(-10,-10)$

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and separated for interrogation. You have the choice of whether or not to confess and each action is associated with a cost. You don't know how your accomplice will act. What do you do?

Example: Prisoner's Dilemma

You and an accomplice have been arrested for a crime and s interrogation. You have the choice of whether or not to confess associated with a cost. You don't know how your accomplice will d byou do?

	P silent	P talks
	$(-4,-4)$	(0, -6)
$\underline{\sim}$	$(-5,-2)$	$(-10,-10)$

Vocabulary \& Concepts

- Always assume local decision making (all players maximizing individual utility)
- Zero sum - every entry in global collective payoff is 0
- Pure strategy - always pick the same action no matter what
- Mixed strategy - pick an action probabilistically
- Dominant strategy - one action is strictly better no matter what the other plays does

