CS 295A/395D: Artificial Intelligence

Epistemic Logic: Knowledge & Belief Prof. Emma Tosch 23 March 2022

The University of Vermont

"Modes" of truth

Recall: logic with respect to a knowledge base

Contextualizes statements – need abstract notion of context

- Informally, time: when is something true?
 - When must something be true? Refers not to time, but "in what context?"
- Formally more abstract than time: time has a specific sequential meaning, but we may want a broader definition

Recap: Semantics

Recall: a formal semantics is a mapping from a surface string (syntax) to an underlying structure that gives a surface string meaning.

Propositional logic example: Given assignment $\mathcal{A} = \{p : 1, q : 0, r : 1\}, \qquad \qquad \mathcal{A} \models (p \lor q) \rightarrow r$

Predicate logic example: Given $\mathcal{U} = \mathbb{N}$ and structure $\mathcal{M} = (\mathcal{F} = \{+\}, \mathcal{P} = \{=\}), \mathcal{M} \models \forall n \exists m (m = n + 1)$

Finding an assignment that models a formula == searching for a satisfying assignment (SAT)

Finding a structure to model a predicate formula \rightarrow not emphasized

Take everything from propositional logic and add:

- \Box ("box" = "necessity" \rightarrow like \forall)
- \diamond ("diamond" = "possibility" \rightarrow like \exists)

Take everything from propositional logic and add:

- \Box ("box" = "necessity" \rightarrow like \forall)
- \diamond ("diamond" = "possibility" \rightarrow like \exists)

p	$\neg p$	$q \wedge p$	p ightarrow q	$p \lor q$

Take everything from propositional logic and add:

- \Box ("box" = "necessity" \rightarrow like \forall)
- \diamond ("diamond" = "possibility" \rightarrow like \exists)

p	$\neg p$	$q \wedge p$	p ightarrow q	$p \lor q$
$\Box p$				

Take everything from propositional logic and add:

- \Box ("box" = "necessity" \rightarrow like \forall)
- \diamond ("diamond" = "possibility" \rightarrow like \exists)

p	$\neg p$	$q \wedge p$	ho ightarrow q	$p \lor q$
$\Box p$	$\diamond \neg p$			

Take everything from propositional logic and add:

- \Box ("box" = "necessity" \rightarrow like \forall)
- \diamond ("diamond" = "possibility" \rightarrow like \exists)

p	$\neg p$	$q \wedge p$	ho ightarrow q	$p \lor q$
$\Box p$	$\Diamond \neg p$	$\Box(q \land p)$	$\Diamond(p ightarrow q)$	

Take everything from propositional logic and add:

- \Box ("box" = "necessity" \rightarrow like \forall)
- \diamond ("diamond" = "possibility" \rightarrow like \exists)

p	$\neg p$	$q \wedge p$	ho ightarrow q	$p \lor q$
$\Box p$	$\Diamond \neg p$	$\Box(q \land p)$	$\diamond(p ightarrow q)$	$q \lor \Box p$

Take everything from propositional logic and add:

- \Box ("box" = "necessity" \rightarrow like \forall)
- \diamond ("diamond" = "possibility" \rightarrow like \exists)

p	$\neg p$	$q \wedge p$	p ightarrow q	$p \lor q$
$\Box p$	$\diamond \neg p$	$\Box(q \land p)$	$\Diamond(p ightarrow q)$	$q \lor \Box p$
$\Box \Box p$				

Take everything from propositional logic and add:

- \Box ("box" = "necessity" \rightarrow like \forall)
- \diamond ("diamond" = "possibility" \rightarrow like \exists)

p	$\neg p$	$q \wedge p$	p ightarrow q	$p \lor q$
$\Box p$	$\diamond \neg p$	$\Box(q \land p)$	$\Diamond(p ightarrow q)$	$q \lor \Box p$
$\Box \Box p$	$\neg \diamondsuit p$			

Take everything from propositional logic and add:

- \Box ("box" = "necessity" \rightarrow like \forall)
- \diamond ("diamond" = "possibility" \rightarrow like \exists)

	p	$\neg p$	$q \wedge p$	p ightarrow q	$p \lor q$
[] <i>p</i>	$\Diamond \neg p$	$\Box(q \land p)$	$\Diamond(p ightarrow q)$	$q \lor \Box p$
	$\Box p$	$\neg \diamondsuit p$	$\Box q \land \Diamond p$	$\Diamond(p \rightarrow \Box q)$	

Take everything from propositional logic and add:

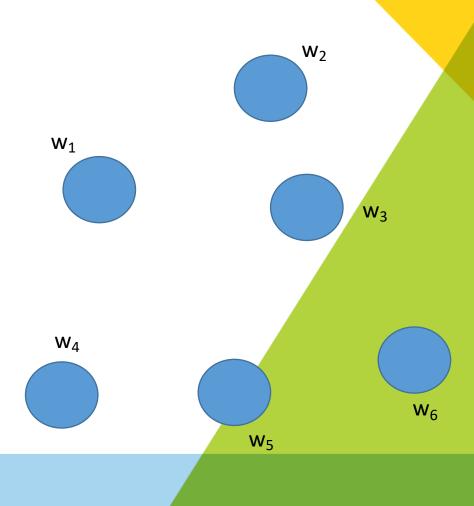
- \Box ("box" = "necessity" \rightarrow like \forall)
- \diamond ("diamond" = "possibility" \rightarrow like \exists)

p	$\neg p$	$q \wedge p$	ho ightarrow q	$p \lor q$
$\Box p$	$\diamond \neg p$	$\Box(q \land p)$	$\Diamond(p ightarrow q)$	$q \lor \Box p$
$\Box \Box p$	$\neg \diamondsuit p$	$\Box q \land \Diamond p$	$\Diamond(p \rightarrow \Box q)$	$\Box \diamondsuit (q \lor \Box p)$

Basic modal logic: Model specification

Model structure: $\mathcal{M} = (W, R, L)$

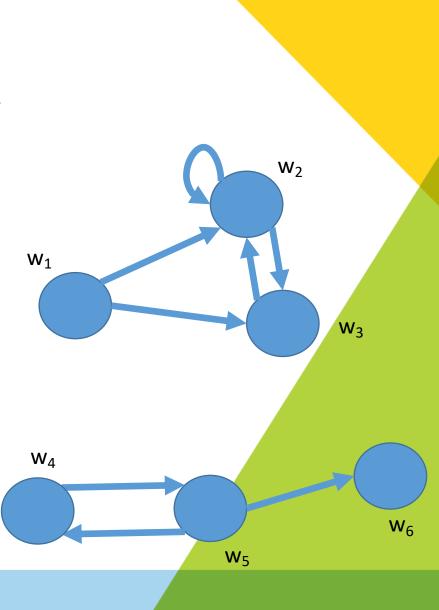
• W: set of "worlds" (nodes in a graph),



Basic modal logic: Model specification

Model structure: $\mathcal{M} = (W, R, L)$

- W: set of "worlds" (nodes in a graph),
- R: binary "accessibility relation" on W (edges in a graph),

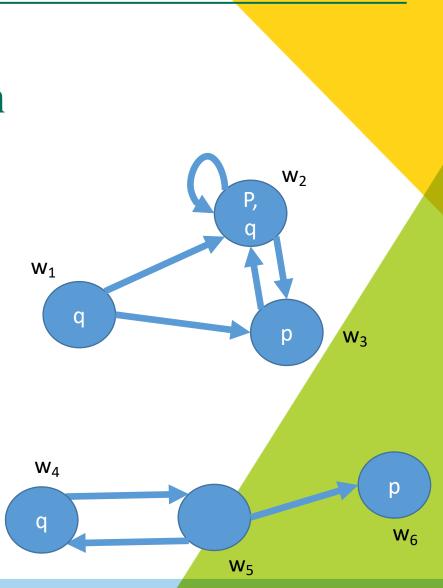


Basic modal logic: Model specification

Model structure: $\mathcal{M} = (W, R, L)$

- W: set of "worlds" (nodes in a graph),
- R: binary "accessibility relation" on W (edges in a graph),
- L: "labeling function" from each world to a subset of atoms,

Where the set of atoms is the set of propositions.



 $w \Vdash \Diamond \varphi \quad \text{iff} \exists w' \in W (R(w, w') \land w' \Vdash \psi)$

 $w \Vdash \Box \varphi \quad \text{iff} \; \forall \; \mathsf{w'} \in \mathsf{W} \; (\mathsf{R}(\mathsf{w}, \mathsf{w'}) \to \mathsf{w'} \Vdash \psi)$

 $w \Vdash \varphi \rightarrow \psi$ iff $w \Vdash \varphi$ whenever $w \Vdash \psi$

 $w \Vdash \varphi \lor \psi$ iff at least one of $w \Vdash \varphi$ or $w \Vdash \psi$

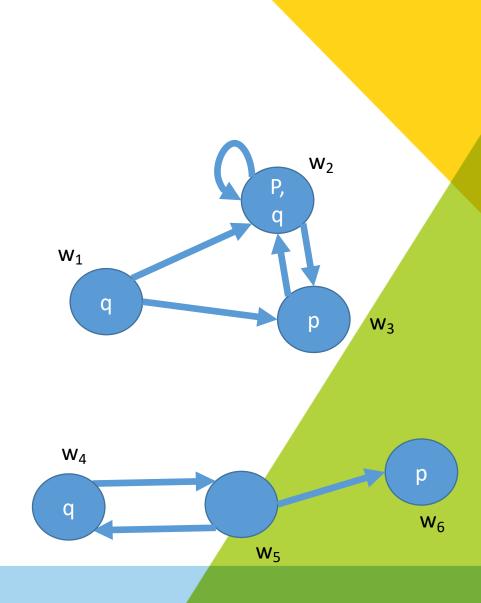
 $w \Vdash \varphi \land \psi$ iff $w \Vdash \varphi$ and $w \Vdash \psi$

 $w \Vdash a \text{ iff } a \in L(w)$ $w \Vdash \neg \varphi \text{ iff } w \Vdash \varphi$

w ⊩ ⊤

w⊮⊥⊥

Given Model structure: $\mathcal{M} = (W, R, L)$. Let $w \in W$. Then:



 $w \Vdash \Diamond \varphi \quad \text{iff} \exists w' \in W (\mathbb{R}(w, w') \land w' \Vdash \psi)$

 $w \Vdash \Box \varphi \text{ iff } \forall w' \in W (R(w, w') \to w' \Vdash \psi)$

 $w\Vdash \varphi \to \psi \text{ iff } w\Vdash \varphi \text{ whenever } w\Vdash \psi$

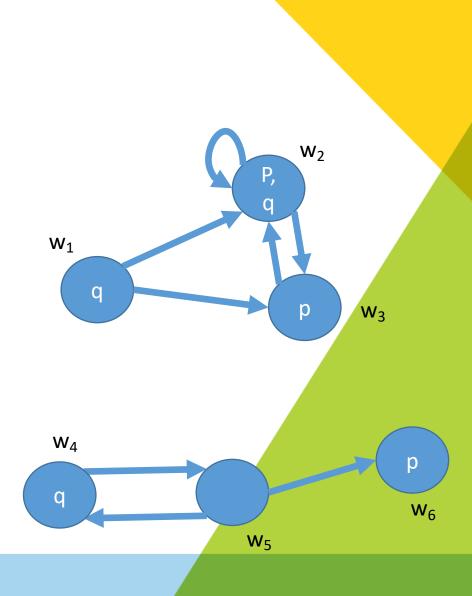
 $w \Vdash \varphi \lor \psi$ iff at least one of $w \Vdash \varphi$ or $w \Vdash \psi$

 $w \Vdash \varphi \land \psi$ iff $w \Vdash \varphi$ and $w \Vdash \psi$

 $w \Vdash a \text{ iff } a \in L(w)$ $w \Vdash \neg \varphi \text{ iff } w \Vdash \varphi$

w ⊪ ⊤ *w* ⊮⊥

Given Model structure: $\mathcal{M} = (W, R, L)$. Let $w \in W$. Then:



 $w \Vdash \Diamond \varphi \quad \text{iff} \exists w' \in W (\mathbb{R}(w, w') \land w' \Vdash \psi)$

 $w \Vdash \Box \varphi \quad \text{iff} \; \forall \; \mathsf{w'} \in \mathsf{W} \; (\mathsf{R}(\mathsf{w}, \mathsf{w'}) \to \mathsf{w'} \Vdash \psi)$

 $w \Vdash \varphi \to \psi \text{ iff } w \Vdash \varphi \text{ whenever } w \Vdash \psi$

 $w \Vdash \varphi \lor \psi$ iff at least one of $w \Vdash \varphi$ or $w \Vdash \psi$

 $w \Vdash \varphi \land \psi$ iff $w \Vdash \varphi$ and $w \Vdash \psi$

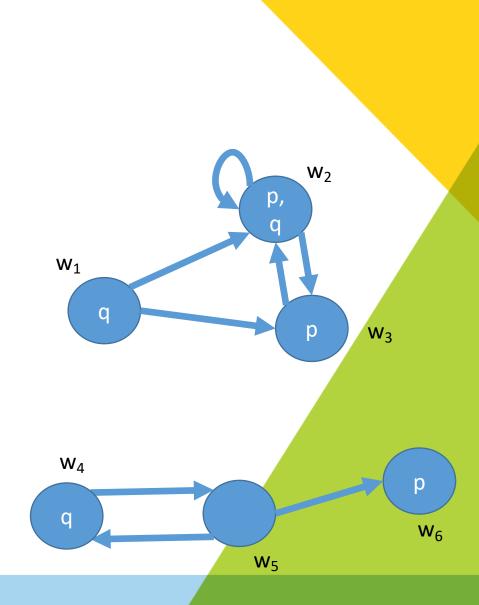
 $w \Vdash \neg \varphi$ iff $w \nvDash \varphi$

 $w \Vdash p \text{ iff } p \in L(w)$

 $w \Vdash \mathsf{T}$

w⊮⊬⊥

Given Model structure: $\mathcal{M} = (W, R, L)$. Let $w \in W$. Then:



Given Model structure: $\mathcal{M} = (W, R, L)$. Let $w \in W$. Then:

 $w \Vdash \mathsf{T}$

w⊮⊬⊥

 $w \Vdash p \text{ iff } p \in L(w)$

 $w \Vdash \neg \varphi$ iff $w \nvDash \varphi$

 $w \Vdash \varphi \land \psi$ iff $w \Vdash \varphi$ and $w \Vdash \psi$

 $w \Vdash \Box \varphi \quad \text{iff} \; \forall \; \mathsf{w'} \in \mathsf{W} \; (\mathsf{R}(\mathsf{w}, \mathsf{w'}) \to \mathsf{w'} \Vdash \psi)$

 $w \Vdash \Diamond \varphi \text{ iff } \exists w' \in W (\mathsf{R}(w, w') \land w' \Vdash \psi)$

 $w \Vdash \varphi \lor \psi$ iff at least one of $w \Vdash \varphi$ or $w \Vdash \psi$

 $w \Vdash \varphi \rightarrow \psi$ iff $w \Vdash \varphi$ whenever $w \Vdash \psi$

 W_2 Ρ, W_1 W₃ W_4 Q W_6 W_5

Let φ = q and ψ = p

 $w \Vdash \Diamond \varphi$ iff $\exists w' \in W (R(w, w') \land w' \Vdash \psi)$

 $w \Vdash \Box \varphi \quad \text{iff} \; \forall \; \mathsf{w'} \in \mathsf{W} \; (\mathsf{R}(\mathsf{w}, \mathsf{w'}) \to \mathsf{w'} \Vdash \psi)$

 $w \Vdash \varphi \rightarrow \psi$ iff $w \Vdash \varphi$ whenever $w \Vdash \psi$

 $w \Vdash \varphi \lor \psi$ iff at least one of $w \Vdash \varphi$ or $w \Vdash \psi$

 $w \Vdash \varphi \land \psi$ iff $w \Vdash \varphi$ and $w \Vdash \psi$

 $w \Vdash \neg \varphi$ iff $w \nvDash \varphi$

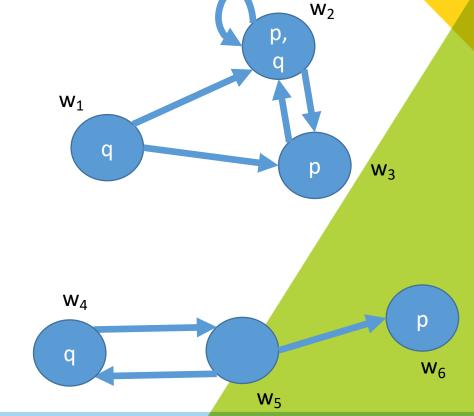
 $w \Vdash \mathsf{T}$

w⊮⊬⊥

 $w \Vdash p \text{ iff } p \in L(w)$

Basic modal logic: Semantics

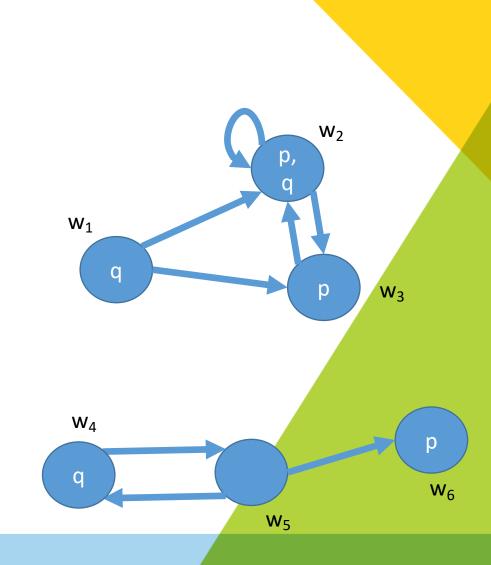
Given Model structure: $\mathcal{M} = (W, R, L)$. Let $w \in W$. Then:



 $w \Vdash \downarrow \bot$ $w \Vdash p \text{ iff } p \in L(w)$ $w \Vdash \neg \varphi \text{ iff } w \Vdash \varphi$ $w \Vdash \varphi \land \psi \text{ iff } w \Vdash \varphi \text{ and } w \Vdash \psi$ $w \Vdash \varphi \land \psi \text{ iff } at \text{ least one of } w \Vdash \varphi \text{ or } w \Vdash \psi$ $w \Vdash \varphi \rightarrow \psi \text{ iff } w \Vdash \varphi \text{ whenever } w \vdash \psi$ $w \Vdash \varphi \rightarrow \psi \text{ iff } w \Vdash \varphi \text{ whenever } w \vdash \psi$ $w \Vdash \Box \varphi \text{ iff } \forall w' \in W (R(w, w')) \rightarrow w' \Vdash \psi)$ $w \Vdash \Diamond \varphi \text{ iff } \exists w' \in W (R(w, w') \land w' \Vdash \psi)$

 $w \Vdash \mathsf{T}$

Given Model structure: $\mathcal{M} = (W, R, L)$. Let $w \in W$. Then:



Given Model structure: $\mathcal{M} = (W, R, L)$. Let $w \in W$. Then:

 $w \Vdash \top$

 $w \Vdash \!\!\! \perp$

 $w \Vdash p \text{ iff } p \in L(w)$

 $w\Vdash \neg \varphi \text{ iff } w \nvDash \varphi$

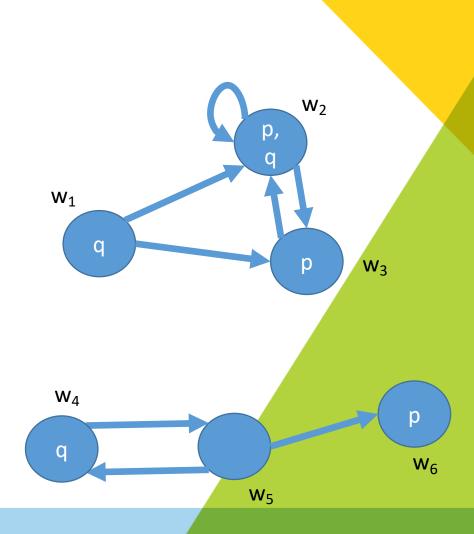
 $w \Vdash \varphi \land \psi$ iff $w \Vdash \varphi$ and $w \Vdash \psi$

 $w \Vdash \varphi \lor \psi$ iff at least one of $w \Vdash \varphi$ or $w \Vdash \psi$

 $w\Vdash \varphi \to \psi \text{ iff } w\Vdash \varphi \text{ whenever } w\Vdash \psi$

```
w \Vdash \Box \varphi \text{ iff } \forall w' \in \mathbb{W} (\mathbb{R}(w, w') \to w' \Vdash \psi)
```

 $w \Vdash \Diamond \varphi \text{ iff } \exists \ \mathsf{w'} \in \mathsf{W} \ (\mathsf{R}(\mathsf{w}, \mathsf{w'}) \land \ \mathsf{w'} \Vdash \psi)$



Find a world w such that $w \Vdash \Box p \lor \Box q$

Given Model structure: $\mathcal{M} = (W, R, L)$. Let $w \in W$. Then:

 $w \Vdash \top$

 $w \Vdash \!\!\! \perp$

 $w \Vdash p \text{ iff } p \in L(w)$

 $w\Vdash \neg \varphi \text{ iff } w \nVdash \varphi$

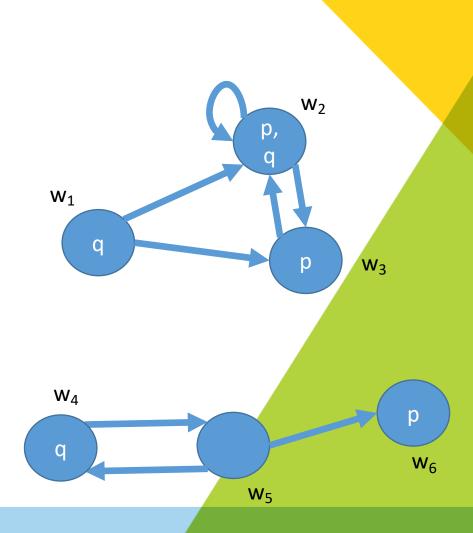
 $w \Vdash \varphi \land \psi$ iff $w \Vdash \varphi$ and $w \Vdash \psi$

 $w \Vdash \varphi \lor \psi$ iff at least one of $w \Vdash \varphi$ or $w \Vdash \psi$

 $w\Vdash \varphi \to \psi \text{ iff } w\Vdash \varphi \text{ whenever } w \Vdash \psi$

```
w \Vdash \Box \varphi \text{ iff } \forall w' \in \mathbb{W} (\mathbb{R}(w, w') \to w' \Vdash \psi)
```

 $w \Vdash \Diamond \varphi \text{ iff } \exists \ \mathsf{w'} \in \mathsf{W} \ (\mathsf{R}(\mathsf{w}, \mathsf{w'}) \land \ \mathsf{w'} \Vdash \psi)$



Find a world w such that $w \Vdash \Box (p \lor q)$

Given Model structure: $\mathcal{M} = (W, R, L)$. Let $w \in W$. Then:

 $w \Vdash \top$

 $w \Vdash \!\!\! \perp$

 $w \Vdash p \text{ iff } p \in L(w)$

 $w\Vdash \neg \varphi \text{ iff } w \nvDash \varphi$

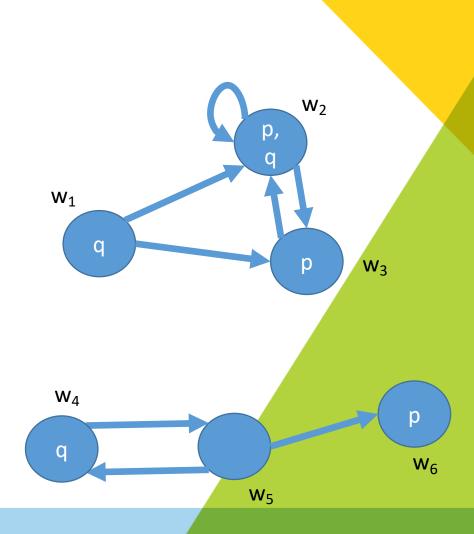
 $w \Vdash \varphi \land \psi$ iff $w \Vdash \varphi$ and $w \Vdash \psi$

 $w \Vdash \varphi \lor \psi$ iff at least one of $w \Vdash \varphi$ or $w \Vdash \psi$

 $w\Vdash \varphi \to \psi \text{ iff } w\Vdash \varphi \text{ whenever } w \Vdash \psi$

```
w \Vdash \Box \varphi \text{ iff } \forall w' \in \mathbb{W} (\mathbb{R}(w, w') \to w' \Vdash \psi)
```

 $w \Vdash \Diamond \varphi \text{ iff } \exists \ \mathsf{w'} \in \mathsf{W} \ (\mathsf{R}(\mathsf{w}, \mathsf{w'}) \land \ \mathsf{w'} \Vdash \psi)$



Find a world *w* such that $w \Vdash \Box p \rightarrow p$

Given Model structure: $\mathcal{M} = (W, R, L)$. Let $w \in W$. Then:

 $w \Vdash \top$

 $w \Vdash \!\!\! \perp$

 $w \Vdash p \text{ iff } p \in L(w)$

 $w\Vdash \neg \varphi \text{ iff } w \nvDash \varphi$

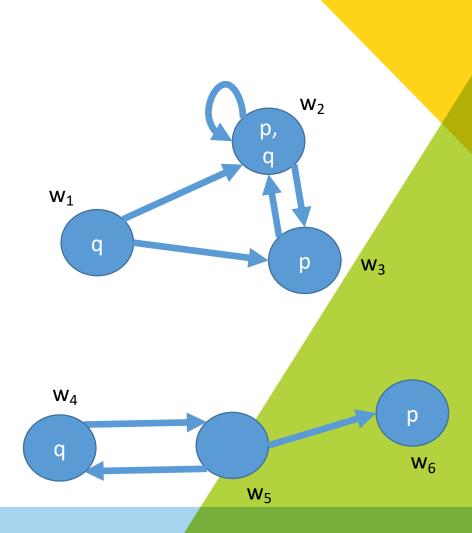
 $w \Vdash \varphi \land \psi$ iff $w \Vdash \varphi$ and $w \Vdash \psi$

 $w \Vdash \varphi \lor \psi$ iff at least one of $w \Vdash \varphi$ or $w \Vdash \psi$

 $w\Vdash \varphi \to \psi \text{ iff } w\Vdash \varphi \text{ whenever } w \Vdash \psi$

```
w \Vdash \Box \varphi \text{ iff } \forall w' \in \mathbb{W} (\mathbb{R}(w, w') \to w' \Vdash \psi)
```

 $w \Vdash \Diamond \varphi \quad \text{iff} \exists w' \in W (\mathsf{R}(w, w') \land w' \Vdash \psi)$



Find a world w such that $w \Vdash \diamond \top$

Given Model structure: $\mathcal{M} = (W, R, L)$. Let $w \in W$. Then:

 $w \Vdash \top$

 $w \Vdash \bot$

 $w \Vdash p \text{ iff } p \in L(w)$

 $w\Vdash \neg \varphi \text{ iff } w \nVdash \varphi$

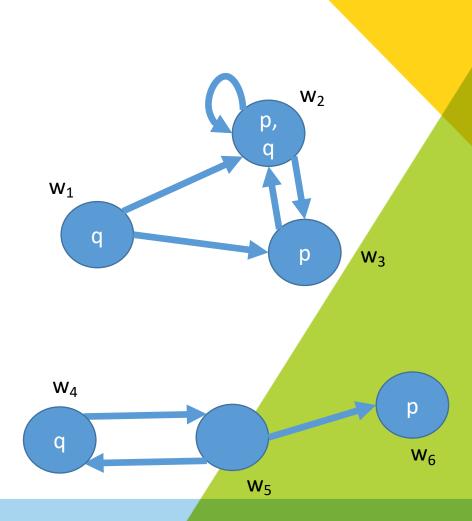
 $w \Vdash \varphi \land \psi$ iff $w \Vdash \varphi$ and $w \Vdash \psi$

 $w \Vdash \varphi \lor \psi$ iff at least one of $w \Vdash \varphi$ or $w \Vdash \psi$

 $w\Vdash \varphi \to \psi \text{ iff } w\Vdash \varphi \text{ whenever } w \Vdash \psi$

```
w \Vdash \Box \varphi \text{ iff } \forall w' \in \mathbb{W} (\mathbb{R}(w, w') \to w' \Vdash \psi)
```

 $w \Vdash \Diamond \varphi \text{ iff } \exists \ w' \in \mathbb{W} \ (\mathbb{R}(w, w') \land w' \Vdash \psi)$



Find a world *w* such that $w \Vdash \Box \bot$

New rules/equivalences

DeMorgan's:Distributive:Tautology, contradiction: $\neg \Box \varphi = \diamond \neg \varphi$ $\Box (\varphi \land \psi) = \Box \varphi \lor \Box \psi$ $\Box T = T$ $\neg \diamond \varphi = \Box \neg \varphi$ $\diamond (\varphi \lor \psi) = \diamond \varphi \land \diamond \psi$ $\Box T \neq \diamond T$ Connective equivalence: $\neg \Box \neg \varphi = \diamond \varphi$ $\diamond \bot \neq \Box \bot$

Basic modal logic: Stacked modals

Given Model structure: $\mathcal{M} = (W, R, L)$. Let $w \in W$. Then:

 $w \Vdash \top$

 $w \Vdash \bot$

 $w \Vdash p \text{ iff } p \in L(w)$

 $w\Vdash \neg \varphi \text{ iff } w \nvDash \varphi$

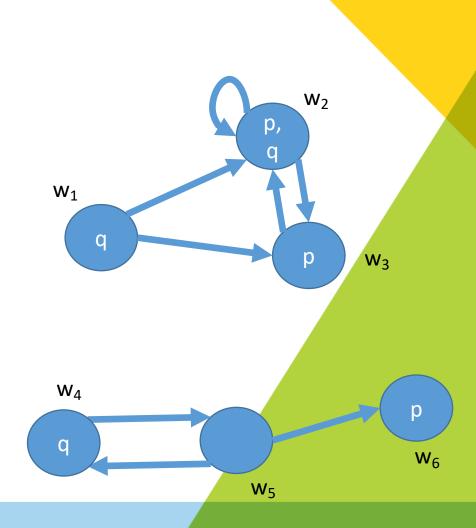
 $w \Vdash \varphi \land \psi$ iff $w \Vdash \varphi$ and $w \Vdash \psi$

 $w \Vdash \varphi \lor \psi$ iff at least one of $w \Vdash \varphi$ or $w \Vdash \psi$

 $w\Vdash \varphi \to \psi \text{ iff } w\Vdash \varphi \text{ whenever } w\Vdash \psi$

```
w \Vdash \Box \varphi \text{ iff } \forall w' \in W (R(w, w') \rightarrow w' \Vdash \psi)
```

 $w \Vdash \Diamond \varphi \text{ iff } \exists \ \mathsf{w'} \in \mathsf{W} \ (\mathsf{R}(\mathsf{w}, \mathsf{w'}) \land \ \mathsf{w'} \Vdash \psi)$



Find a world w such that $w \Vdash \Box \diamond q$

Basic modal logic: Stacked modals

Given Model structure: $\mathcal{M} = (W, R, L)$. Let $w \in W$. Then:

 $w \Vdash \top$

 $w \Vdash \bot$

 $w \Vdash p \text{ iff } p \in L(w)$

 $w\Vdash \neg \varphi \text{ iff } w \nVdash \varphi$

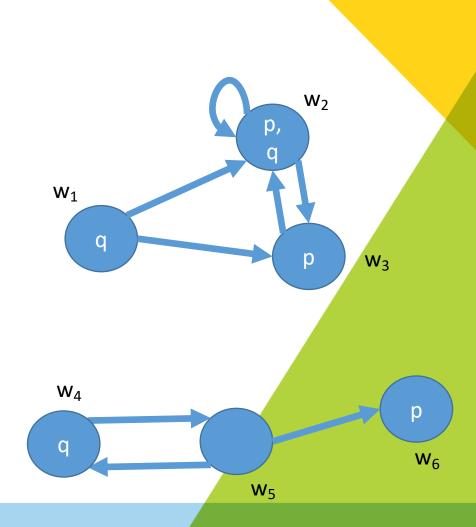
 $w \Vdash \varphi \land \psi$ iff $w \Vdash \varphi$ and $w \Vdash \psi$

 $w \Vdash \varphi \lor \psi$ iff at least one of $w \Vdash \varphi$ or $w \Vdash \psi$

 $w\Vdash \varphi \to \psi \text{ iff } w\Vdash \varphi \text{ whenever } w \Vdash \psi$

```
w \Vdash \Box \varphi \text{ iff } \forall w' \in \mathbb{W} (\mathbb{R}(w, w') \to w' \Vdash \psi)
```

 $w \Vdash \Diamond \varphi \text{ iff } \exists \ \mathsf{w'} \in \mathsf{W} \ (\mathsf{R}(\mathsf{w}, \mathsf{w'}) \land \ \mathsf{w'} \Vdash \psi)$



Find a world w such that $w \Vdash \diamond \diamond \diamond \Box \perp$

Model satisfiability

So far: world safisfiability (e.g., $w \Vdash p$).

Let $\mathcal{M} = (W, R, L)$. If every world $w \in W$ satisfies a formula φ , then we say $\mathcal{M} \models \varphi$.

Valid formulas: Propositional logic

Recall: a formula is valid iff every possible assignment/structure makes it true.

Equivalently: a formula is valid iff there does not exist an assignment that could make it false.

Examples:

$$p \lor \neg p$$
 $p \to p$ $(p \to q) \to (\neg q \to \neg p)$

Valid formulas: Basic Modal Logic

All the same valid formulas, plus "K":

 $(\Box(\varphi \to \psi) \land \Box \varphi) \to \Box \psi$

Also written:

$$\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$$

Work through derivation on the board

New interpretation of modes: Knowledge, Belief

Necessity, possibility \rightarrow abstract concept

Can provide alternative interpretations of "It is necessarily true that φ " for the string $\Box \varphi$:

- "It will always be true that φ " (temporal logic \rightarrow coming up!)
- "It ought to be true that" (deontological \rightarrow law)
- "Agent Q believes that" (belief)
- "Agent Q knows that" (knowledge)

New interpretation of modes: Knowledge, Belief

Necessity, possibility \rightarrow abstract concept

Can provide alternative interpretations of "It is necessarily true that φ " for the string $\Box \varphi$:

- "It will always be true that φ " (temporal logic \rightarrow coming up!)
- "It ought to be true that" (deontological \rightarrow law) $\Box \varphi$
- "Agent Q believes that" (belief)
- "Agent Q knows that" (knowledge)

 $\label{eq:phi} \begin{array}{l} & \diamond \, \varphi \\ \\ " \varphi \text{ is consistent with Q's beliefs"} \end{array}$

New interpretation of modes: Knowledge, Belief

Necessity, possibility \rightarrow abstract concept

Can provide alternative interpretations of "It is necessarily true that φ " for the string $\Box \varphi$:

- "It will always be true that φ " (temporal logic \rightarrow coming up!)
- "It ought to be true that" (deontological \rightarrow law)
- "Agent Q believes that" (belief)
- "Agent Q knows that" (knowledge) $\Box \varphi$

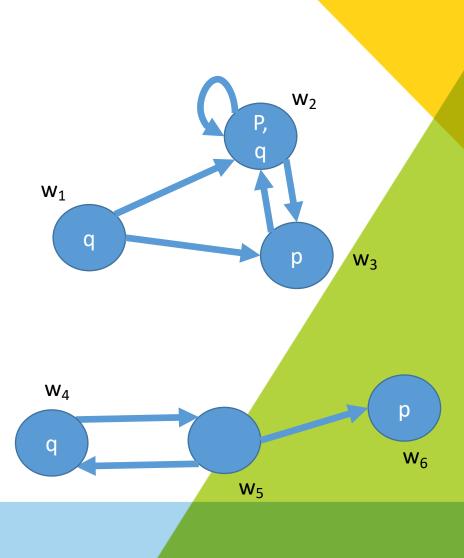
• φ "For all Q knows, φ "

Both interpretations of possible (diamond) are more intuitive under $\neg \Box \neg \varphi = \diamond \varphi$

Capturing domain-specific axioms

Returning to the totally abstracted case:

Is $\Box p \rightarrow p$ valid?



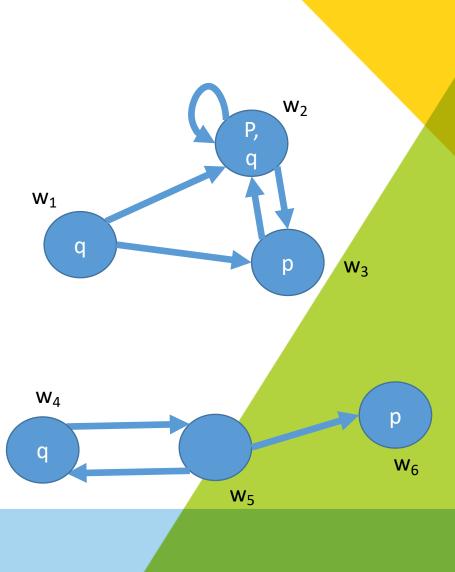
Capturing domain-specific axioms

Returning to the totally abstracted case:

Is $\Box p \rightarrow p$ valid?

If \Box represents **belief**, is $\Box p \rightarrow p$?

(Recall: $\Box p$ means "Agent Q believes p to be true")



Capturing domain-specific axioms

Returning to the totally abstracted case:

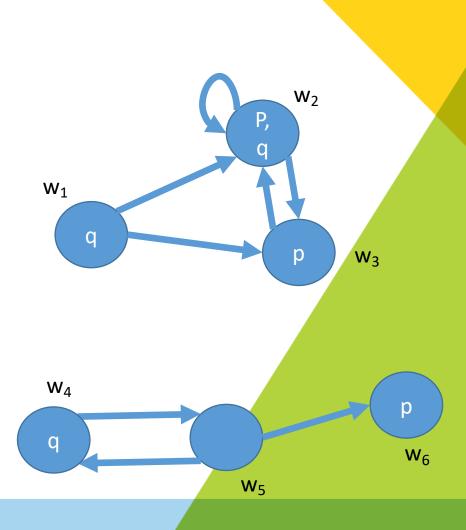
Is $\Box p \rightarrow p$ valid?

If \Box represents belief, is $\Box p \rightarrow p$?

(Recall: □p means "Agent Q believes p to be true")

If \Box represents **knowledge**, is $\Box p \rightarrow p$?

(Recall: $\Box p$ means "Agent Q knows p to be true")



Sometimes we want to assert a formula schema

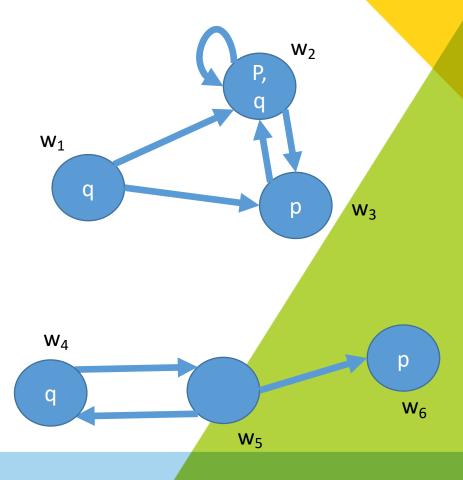
Formula schema: high-level pattern (we've seen this before)

e.g., $\varphi \lor \neg \varphi$ is a schema;

 $p \lor \neg p$ and $(p \to q) \lor \neg (p \to q)$ are instances

We want $\Box p \rightarrow p$ to be true when talking about knowledge, but not belief (even though it isn't valid generally).

When we assert a formula schema, we introduce it as an **axiom**.



Axiom	Knowledge	Belief	
$\Box p \to p$	Agent Q only knows true things	NOT A SUITABLE AXIOM	

Axiom	Knowledge	Belief	
$\Box p \to p$	Agent Q only knows true things	NOT A SUITABLE AXIOM	
$\Box \varphi \to \Box \Box \varphi$	Agent Q knows what it knows (introspection)	Agent Q believes what it believes	

Axiom	Knowledge	Belief	
$\Box p \to p$	Agent Q only knows true things	NOT A SUITABLE AXIOM	
$\Box \varphi \to \Box \Box \varphi$	Agent Q knows what it knows (introspection)	Agent Q believes what it believes	
$\circ \varphi \rightarrow \circ \Box \varphi$	If agent Q doesn't know something, it doesn't know what it doesn't know	If agent Q doesn't believe something, it doesn't believe what it doesn't believe	

Axiom	Knowledge	Belief	
$\Box p \to p$	Agent Q only knows true things	NOT A SUITABLE AXIOM	
$\Box \varphi \to \Box \Box \varphi$	Agent Q knows what it knows (introspection)	Agent Q believes what it believes	
$\circ \varphi \rightarrow \circ \Box \varphi$	If agent Q doesn't know something, it doesn't know what it doesn't know	If agent Q doesn't believe something, it doesn't believe what it doesn't believe	
¢Т	Agent Q doesn't know contradictions	Agent Q doesn't believe contradictions	

Axiom	Knowledge	Belief	
$\Box p \to p$	Agent Q only knows true things	NOT A SUITABLE AXIOM	
$\Box \varphi \to \Box \Box \varphi$	Agent Q knows what it knows (introspection)	Agent Q believes what it believes	
$\circ \varphi \rightarrow \Box \circ \varphi$	If agent Q doesn't know something, it doesn't know what it doesn't know	If agent Q doesn't believe something, it doesn't believe what it doesn't believe	
¢Τ	Agent Q doesn't know contradictions	Agent Q doesn't believe contradictions	
$\Box \varphi \to \diamond \varphi$	Agent Q can chain knowledge (true things)	Agent Q can chain belief (true things)	

Axiom	Knowledge	Belief	Property (axiom name)	R(w, w')
$\Box p \to p$	Agent Q only knows true things	NOT A SUITABLE AXIOM	Reflexive (T)	
$\Box \varphi \to \Box \Box \varphi$	Agent Q knows what it knows (introspection)	Agent Q believes what it believes		
$\circ \varphi \rightarrow \Box \circ \varphi$	If agent Q doesn't know something, it doesn't know what it doesn't know	If agent Q doesn't believe something, it doesn't believe what it doesn't believe		
« Т	Agent Q doesn't know contradictions	Agent Q doesn't believe contradictions		
$\Box \varphi \to \diamond \varphi$	Agent Q can chain knowledge (true things)	Agent Q can chain belief (true things)		

Axiom	Knowledge	Belief	Property (axiom name)	R(w, w')
$\Box p \to p$	Agent Q only knows true things	NOT A SUITABLE AXIOM	Reflexive (T)	
$\Box \varphi \to \Box \Box \varphi$	Agent Q knows what it knows (introspection)	Agent Q believes what it believes	Transitive (4)	$ \forall (w, w', w'') \in (W \times W \times W), (R(w, w') \land R(w', w'') \rightarrow R(w, w'')) $
$\circ \varphi \rightarrow \Box \circ \varphi$	If agent Q doesn't know something, it doesn't know what it doesn't know	If agent Q doesn't believe something, it doesn't believe what it doesn't believe		
¢Τ	Agent Q doesn't know contradictions	Agent Q doesn't believe contradictions		
$\Box \varphi \to \diamond \varphi$	Agent Q can chain knowledge (true things)	Agent Q can chain belief (true things)		

Axiom	Knowledge	Belief	Property (axiom name)	R(w, w')
$\Box p \to p$	Agent Q only knows true things	NOT A SUITABLE AXIOM	Reflexive (T)	
$\Box \varphi \to \Box \Box \varphi$	Agent Q knows what it knows (introspection)	Agent Q believes what it believes	Transitive (4)	$ \forall (w, w', w'') \in (W \times W \times W), (R(w, w') \land R(w', w'') \rightarrow R(w, w'')) $
$\circ \varphi \rightarrow \Box \circ \varphi$	If agent Q doesn't know something, it doesn't know what it doesn't know	If agent Q doesn't believe something, it doesn't believe what it doesn't believe	Euclidean (5)	$\forall (w, w', w'') \in (W \times W \times W),$ $(R(w, w') \wedge R(w, w'') \rightarrow R(w', w''))$
¢Τ	Agent Q doesn't know contradictions	Agent Q doesn't believe contradictions		
$\Box \varphi \to \diamond \varphi$	Agent Q can chain knowledge (true things)	Agent Q can chain belief (true things)		

Axiom	Knowledge	Belief	Property (axiom name)	R(w, w')
$\Box p \to p$	Agent Q only knows true things	NOT A SUITABLE AXIOM	Reflexive (T)	
$\Box \varphi \to \Box \Box \varphi$	Agent Q knows what it knows (introspection)	Agent Q believes what it believes	Transitive (4)	$ \forall (w, w', w'') \in (W \times W \times W), \\ (R(w, w') \land R(w', w'') \rightarrow R(w, w'')) $
$\circ \varphi \rightarrow \Box \circ \varphi$	If agent Q doesn't know something, it doesn't know what it doesn't know	If agent Q doesn't believe something, it doesn't believe what it doesn't believe	Euclidean (5)	$\forall (w, w', w'') \in (W \times W \times W),$ $(R(w, w') \wedge R(w, w'') \rightarrow R(w', w''))$
¢Τ	Agent Q doesn't know contradictions	Agent Q doesn't believe contradictions	Serial (D)	$\forall w \in W(\exists w' \in W(R(w, w'))$
$\Box \varphi \to \diamond \varphi$	Agent Q can chain knowledge (true things)	Agent Q can chain belief (true things)	Serial (D)	$\forall w \in W(\exists w' \in W(R(w, w'))$