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Agenda

« Reminder: student hours today until Noon (Innovation E456)

 Recap: Bayes Nets & Independence

 New: Bayes Nets as Causal Graphs



Recap: Bayes Nets as factorization
1. Reverse topologically order the nodes, e.g.
1. F,L, A B, Eor

2. L,F, A, B, E, etc.

2. Factorize joint distribution using graph semanti
G=<V,E> V={V,..Vn}k
PV, ..Vn) =[]P(V;|Parents(V;))

here, P(B, E, A, F, L) = P(F| A)P(L| A)P(A | B



Recap: d-separation
Classical definition (Pearl):

A set 7 is said to d-separate X from Y iff Z blocks every

path from a node in X fo a node inY.
A path pis blocked by 7 iff:

1. pcontainsachaini->m->jorafork| <-

thatmisin Z, or

2. p contains a collideri->m <-jsuch th

Z and no descendantof misin Z.

Independence gives us useful, fast queries.



Recap: Partial Observability

We may need to reason about lafent or
unobserved nodes.

« Because they are unmeasured, we
cannot reason about their specific
values.

Depending on the task, we either:
. Marginalize over them (inference

2. Compute their expected value
(decision making).

Both are forms of integration!



Bayes Nets beyond factorizations

Scenario: 3 variable, no independence relations
Example: height (H), weight (W), success (S)

Possible factorizations of P(H, W, §):

P(S | H, W)P(H| W)P(W) P(S | H, W)P(W | H)P(H)
P(H | S, W)P(S | W)P(W) P(H | S, W)P(W | S)P(S)
P(W | H S)P(H | S)P(S) P(W | H, S)P(S | H)P(H)

All are equivalent factorizations (i.e., same probability distribution)



Bayes Nets beyond factorizations

Scenario: 3 variable, no indé Purely algorithmic
interpretation of Bayes

Example: height (H), weis Nets encoding

Possible factorizations of | factorizations.

P(S | H, W)P(H| W)P(W) P(S | H. W)P(W | H)P(H)

P(H | S, W)P(S | W)P(W) P(H | S, W)P(W | S)P(S)
P(W | H S)P(H | S)P(S) P(W | H, S)P(S | H)P(H)
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Bayes Nets beyond factorizations

Scenario: 3 variable, no independence relations
Example: height (H), weight (W), success (S)

Possible factorizations of P(H, W, §):

P(S | H, W)P(H| W)P(W) P(S | H. W)P(W | H)P(H)

P(H | S, W)P(S | W)P(W) P(H | S, W)P(W | S)P(S)

P(W | H S)P(H | S)P(S) P(W | H, S)P(S | H)P(H)

Does this factorization seem different? Why?



Causal relations

t t+1 X causes Y Iff:
H 1. X happens before Y
2. Manipulating X leads to a change in Y

%&-\ (probabilistically)
...causes P(Y) at time t+1

Setting X :=X  to not equal P(Y) at time t
at time t...




We have intuitive notions of causality

Used informal background knowledge about
temporal precedence and causality to encode
independence

« Earthquakes and burglaries both cause the ala
trigger.

« Earthquakes don't cause burglaries & vice

* Fry and Leela never call in response to b
nor earthquakes
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We have intuitive notions of causality

Used informal background knowledge about
temporal precedence and causality o encode
iIndependence

« Earthquakes and burglaries both cause the ala
trigger.

« Earthquakes don't cause burglaries & vice

* Fry and Leela never call in response to b
nor earthquakes.




Bayes Nets vs. Causal Graphs

Scenario: 3 variable, no independence relations
Example: height (H), weight (W), success (S)

Possible factorizations of P(H, W, S):

P(S | H. W)P(H| W)P(W) P(S | H. W)P(W | H)P(H)
P(H | S, W)P(S | W)P(W) P(H | S. W)P(W | S)P(S)
P(W | H S)P(H | S)P(S) P(W | H, S)P(S | H)P(H)

Not causal. Why?



Bayes Nets beyond factorizations

Scenario: 3 variable, no independence relations
Example: height (H), weight (W), success (S)

Possible factorizations of P(H, W, S):

P(S | H. W)P(H| W)P(W) P(S | H. W)P(W | H)P(H)
P(H | S, W)P(S | W)P(W) P(H | S. W)P(W | S)P(S)
P(W | H S)P(H | S)P(S) P(W | H, S)P(S | H)P(H)

Possibly causal.



Gausal graphical models (GGMS) are
an /nterorelation of Bayes Ners.

semantics of a Bayes Net = factorization.

semantics of a GGM = factorization + /nfervention.

i.e., how to reason from first principles about the statement: setting X := x at time y
causes P(Y) at time t+1 to not equal P(Y) at time t




Deriving the interventional distribution w/do-calculus
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Deriving the interventional distribution w/do-calculus
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Deriving the interventional distribution w/do-calculus
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Deriving the interventional distribution w/do-calculus
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Deriving the interventional distribution w/do-calculus

B E What does it look like to ‘
0.01 ° ° 0.02 “intfervene” on A¢
N 1. Set A=1 with probability ]

1 g (1) 2. Remove incoming edges
on A.
1 1 0
1 1 1 3. Update dependent
conditional probability:
S LA distributions.
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Compare P(F) vs. P(F) under intervention



use indices to denote values that the variable takes on

= [0.99, 0.01]

= [0.98, 0.02]

outer index 1s B; inner is E. don't do this at home.

= [[[0.99, 0.01], [0.10, 0.90]], [[0.05, ©0.95], [0.01, 0.99]]]
outer index 1s value of A

[[0.95, 0.05], [0.25, 0.75]]

[[0.90, 0.10], [0.05, 0.95]]

rnHI>FHMIHF

# P(F) —— naive
PF = [0, 0]
for f in [0, 1]:
for b in [0,1]:
for e in [0,1]:
for a in [0,1]:
for 1 in [0,1]:
# P(F|A)P(L|A)P(A|B,E)P(B)P(E)
PFIf] += Flal[flxL[al[ll*xA[b]l[e]l[al*xBIblxE[el

print(PF) #[0.924079, 0.075921]
print(PF[0] + PF[1]) # 1.0



use indices to denote values that the variable takes on
= [0.99, 0.01]

= [0.98, 0.02]

outer index 1s B; inner is E. don't do this at home.

= [[[e, 1], [eo, 111, [le, 11, [@, 11]]

outer index 1s value of A

[[0.95, 0.05], [0.25, 0.75]]

[[0.90, 0.10], [0.05, 0.95]]

FrTH>>H MK

# P(F | do(A := 1)) —— naive
PF = [0, O]
for f in [0, 1]:
for b in [0,1]:
for e in [0,1]:
for a in [0,1]:
for 1 in [0,1]:
# P(F|A)P(L|A)P(A|B,E)P(B)P(E)
PFIf] += Flal[flxL[al[ll*xA[b]l[e]l[al*xBIblxE[el

print(PF) #[0.25, 0.74999999999]
print(PF[@] + PF[1]) # 0.99999999999
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use indices to denote values that the variable takes on
= [0.99, 0.01]

= [0.98, 0.02]

outer index 1s B; inner is E. don't do this at home.
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rnHI>FHMIHF

# P(F | do(A := 1))
PF = [0, 0]
for f in [0, 1]:
for 1 in [0,1]:
# P(F|A)P(L|A)
PF[f] += F[1][flxL[1][1]

print(PF) #[0.25, 0.74999999999]
print(PF[0] + PF[1]) # ©0.99999999999




use indices to denote values that the variable takes on
= [0.99, 0.01]

= [0.98, 0.02]

outer index 1s B; inner is E. don't do this at home.

= [[[e, 1], [eo, 111, [le, 11, [@, 11]]
outer index 1s value of A

[[0.95, 0.05], [0.25, 0.75]]

[[0.90, 0.10], [0.05, 0.95]]

FrTH>>H MK

# P(F | do(A := 1))
PF = [0, 0]
for f in [0, 1]:
for 1 in [0,1]:
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PFIf] += Flal[f]lxL[a]l[1l]
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Deriving the interventional distribution w/do-calculus

_ What does it look like to
0.02 “intervene” on A¢

N 1. Set A=1 with probability

2. Remove incoming ed
on A.

N N
_ = O O
L O L O

3. Update depende
conditional prob

m distributions.
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Do stuff on the board



T HP>H MK

use indices to denote values that the variable takes on

= [0.99, 0.01]

= [0.98, 0.02]

outer index 1s B; inner is E. don't do this at home.

= [[[0.99, 0.01], [0.10, ©0.90]1], [[0.05, ©0.95], [0.01, 0.99]]]
outer index 1s value of A

[[0.95, 0.05], [0.25, 0.75]]

[[0.90, 0.10], [0.05, 0.95]]



T HP>H MK

use indices to denote values that the variable takes on

= [0.99, 0.01]

= [0.98, 0.02]

outer index 1s B; inner is E. don't do this at home.

= [[[0.99, 0.01], [0.10, ©0.90]1], [[0.05, ©0.95], [0.01, 0.99]]]
outer index 1is value of A; inner is value of B

[[[0.99, 0.01], [0.98, 0.02]], [[0.97, 0.03], [0.96, 0.04]]]
[[0.90, 0.10], [0.05, 0.95]]



use indices to denote values that the variable takes on

= [0.99, 0.01]

= [0.98, 0.02]

outer index 1s B; inner is E. don't do this at home.

= [[[0.99, 0.01], [0.10, 0.90]], [[0.05, ©0.95], [0.01, 0.99]]]
outer index 1is value of A; inner is value of B

[[[0.99, 0.01], [0.98, 0.02]], [[0.97, 0.03], [0.96, 0.04]]]
[[0.90, 0.10], [0.05, 0.95]]

T H>>H MDA

PFdoA = [[0,0], [0,0]]
for f in [0,1]:
for a in [0,1]:
for 1 in [0,1]:
for b in [0,1]:
# P(F|do(A))P(L|do(A))P(B)
PFdoAlal [f] += Flal[b] [flxL[a]l [l]I*B[b]

print(PFdoA)
# [[0.9899000000000001, 0.0101], [0.9699, 0.030099999999999995]]

Draw graph on board



What does this give us?

We can compute the effect of

B G G Ol setting A=0 vs. A=1 (denoted wit
0.01 0.02 “do"):

DN . Need to compute a meanir

quantity (not probability)

« Expectation!
E[F| do(A:=0) - F|do(A:
= E[F | do(A:=0)] - E[F

1 0
1 0
1 1
1 1

O = O

0.75 1




# Feel free to compute over either the original graph (here) or the
# modified one
PFdoAl = [0,0]
for f in [0,1]:
for 1 in [0,1]:
PFdoA1[f] += F[1][f] % L[1][1]

PFdoAQ = [0,0]
for f in [0,1]:
for 1 in [0,1]:
PFdoAQ[f] += F[Q][f] x L[@][1]

EFdoAl = sum([f x PFdoAl[f] for f in range(len(PFdoAl))])
EFdoA® = sum([f x PFdoA@[f] for f in range(len(PFdoA®@))])
print (EFdoAl - EFdoAQ)



What does this all mean? Remember: expectation can only
be computed over random

variables

0.01 ° ° 0.02 Random variables are functions

from outcomes to real number.

Because these are Bernoulli
from the set {0, 1}) random
variables, they can be

manipulated as numbe

O S N S S =Y
) =2 O O
O =B O

...but this interpretati

ﬂ be meaningfull

095 1
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What does this all mean? Remember: expectation can only
be computed over random

variables

0.01 ° ° 0.02 Random variables are functions

from outcomes to real number.

Because these are Bernoulli
from the set {0, 1}) random
variables, they can be

manipulated as numbe

O S N S S =Y
) =2 O O
O =B O

...but this interpretati

LA be meaningful!

095 1

0.75 1




What does this give us

We may need to reason about lafent
unobserved nodes.

IRL we can manipulate the alarm.

IRL we can’t (or at least shouldn’f)
cause an earthquake.

Do-calculus gives us a mechan
reasoning about experimentg



Important high-level properties of CGMs

What's the big deal with interventione

« Addresses weaknesses of classical Al logics:
« Open world doesn't matter

» Allows counterfactual reasoning

« Sparse representation (no cruft)

« c.f. deep learning, where we expect collinearities in features

« Represents invariance (with respect to other covariates)
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CAUSALITY FOR MACHINE LEARNING

Bernhard Scholkopf
Max Planck Institute for Intelligent Systems, Max-Planck-Ring 4, 72076 Tiibingen, Germany
bs@tuebingen.mpg.de

ABSTRACT

Graphical causal inference as pioneered by Judea Pearl arose from research on artificial intelligence
(AlI), and for a long time had little connection to the field of machine learning. This article discusses
where links have been and should be established, introducing key concepts along the way. It argues
that the hard open problems of machine learning and Al are intrinsically related to causality, and
explains how the field is beginning to understand them.

1 Introduction

The machine learning community’s interest in causality has significantly increased in recent years. My understanding
of causality has been shaped by Judea Pearl and a number of collaborators and colleagues, and much of it went into a
book written with Dominik Janzing and Jonas Peters (Peters et al.,; 2017). I have spoken about this topic on various
oocasionsﬂ and some of it is in the process of entering the machine learning mainstream, in particular the view that
causal modeling can lead to more invariant or robust models. There is excitement about developments at the interface
of causality and machine learning, and the present article tries to put my thoughts into writing and draw a bigger picture.
I hope it may not only be useful by discussing the importance of causal thinking for Al but it can also serve as an
introduction to some relevant concepts of graphical or structural causal models for a machine learning audience.

In spite of all recent successes, if we compare what machine learning can do to what animals accomplish, we observe
that the former is rather bad at some crucial feats where animals excel. This includes transfer to new problems, and any
form of generalization that is not from one data point to the next one (sampled from the same distribution), but rather
from one problem to the next one — both have been termed generalization, but the latter is a much harder form thereof.
This shortcoming is not too surprizing, since machine learning often disregards information that animals use heavily:
interventions in the world, domain shifts, temporal structure — by and large, we consider these factors a nuisance and
try to engineer them away. Finally, machine learning is also bad at thinking in the sense of Konrad Lorenz, i.e., acting
in an imagined space. I will argue that causality, with its focus on modeling and reasoning about interventions, can
make a substantial contribution towards understanding and resolving these issues and thus take the field to the next
level. I will do so mostly in non-technical language, for many of the difficulties of this field are of a conceptual nature.

2 The Mechanization of Information Processing

The first industrial revolution began in the late 18th century and was triggered by the steam engine and water power.
The second one started about a century later and was driven by electrification. If we think about it broadly, then both
are about how to generate and convert forms of energy. Here, the word “generate” is used in a colloquial sense — in
physics, energy is a conserved quantity and can thus not be created, but only converted or harvested from other energy
forms. Some think we are now in the middle of another revolution, called the digital revolution, the big data revolution,
and more recently the Al revolution. The transformation, however, really started already in the mid 20th century under
the name of cybernetics. It replaced energy by information. Like energy, information can be processed by people, but
to do it at an industrial scale, we needed to invent computers, and to do it intelligently, we now use AL Just like energy,

'e.g., 61kop , talks at ICLR, ACML, and in machine learning labs that have meanwhile developed an interest in
causality (e.g., DeepMind); much of the present paper is essentially a written out version of these talks

Applications in Al



Next Class: Epistemic Logics




