
CS 295A/395D: 
Artificial Intelligence

Bayes Nets as Causal 
Graphs

Prof. Emma Tosch

21 March 2022



Agenda

• Reminder: student hours today until Noon (Innovation E456)

• Recap: Bayes Nets & Independence

• New: Bayes Nets as Causal Graphs



Recap: Bayes Nets as factorization
1. Reverse topologically order the nodes, e.g.

1. F, L, A, B, E or

2. L, F, A, B, E, etc.

2. Factorize joint distribution using graph semantics of 

𝒢 =< 𝒱, ℰ >, 𝒱 = 𝑉1, …𝑉𝑛 :

𝑃 𝑉1, …𝑉𝑛 = ∏𝑃 𝑉𝑖 𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑉!

here, P(B, E, A, F, L) = P(F|A)P(L|A)P(A|B, E)P(B)P(E)
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Recap: d-separation
Classical definition (Pearl):

A set Z is said to d-separate X from Y iff Z blocks every 

path from a node in X to a node in Y. 

A path p is blocked by Z iff:

1. p contains a chain i -> m -> j or a fork I <- m -> j such 

that m is in Z, or

2. p contains a collider i -> m <- j such that m is NOT in 

Z and no descendant of m is in Z.
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Independence gives us useful, fast queries.



Recap: Partial Observability
We may need to reason about latent or
unobserved nodes.

• Because they are unmeasured, we 
cannot reason about their specific 
values.

Depending on the task, we either:

1. Marginalize over them (inference).

2. Compute their expected values 
(decision making).
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Both are forms of integration!



Bayes Nets beyond factorizations

Scenario: 3 variable, no independence relations

Example: height (H), weight (W), success (S)

Possible factorizations of P(H, W, S):

P(S | H, W)P(H| W)P(W) P(S | H, W)P(W | H)P(H)

P(H | S, W)P(S | W)P(W) P(H | S, W)P(W | S)P(S)

P(W | H, S)P(H | S)P(S) P(W | H, S)P(S | H)P(H)

All are equivalent factorizations (i.e., same probability distribution)
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Purely algorithmic 
interpretation of Bayes 

Nets encoding 
factorizations.
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Bayes Nets beyond factorizations

Scenario: 3 variable, no independence relations

Example: height (H), weight (W), success (S)

Possible factorizations of P(H, W, S):

P(S | H, W)P(H| W)P(W) P(S | H, W)P(W | H)P(H)

P(H | S, W)P(S | W)P(W) P(H | S, W)P(W | S)P(S)

P(W | H, S)P(H | S)P(S) P(W | H, S)P(S | H)P(H)

S

W

H

Does this factorization seem different? Why? 



Causal relations

X causes Y iff:

1. X happens before Y
2. Manipulating X leads to a change in Y 

(probabilistically)

t t+1

X Y

Setting X := x
at time t…

…causes P(Y) at  time t+1
to not equal P(Y) at time t



We have intuitive notions of causality
Used informal background knowledge about 
temporal precedence and causality to encode 
independence

• Earthquakes and burglaries both cause the alarm to 
trigger.

• Earthquakes don’t cause burglaries & vice versa

• Fry and Leela never call in response to burglaries, 
nor earthquakes
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We have intuitive notions of causality
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Used informal background knowledge about 
temporal precedence and causality to encode 
independence

• Earthquakes and burglaries both cause the alarm to 
trigger.

• Earthquakes don’t cause burglaries & vice versa.

• Fry and Leela never call in response to burglaries, 
nor earthquakes.



Bayes Nets vs. Causal Graphs

Scenario: 3 variable, no independence relations

Example: height (H), weight (W), success (S)

Possible factorizations of P(H, W, S):

P(S | H, W)P(H| W)P(W) P(S | H, W)P(W | H)P(H)

P(H | S, W)P(S | W)P(W) P(H | S, W)P(W | S)P(S)

P(W | H, S)P(H | S)P(S) P(W | H, S)P(S | H)P(H)

S

W

H

Not causal. Why?



Bayes Nets beyond factorizations

Scenario: 3 variable, no independence relations

Example: height (H), weight (W), success (S)

Possible factorizations of P(H, W, S):

P(S | H, W)P(H| W)P(W) P(S | H, W)P(W | H)P(H)

P(H | S, W)P(S | W)P(W) P(H | S, W)P(W | S)P(S)

P(W | H, S)P(H | S)P(S) P(W | H, S)P(S | H)P(H)

H

W

S

Possibly causal.



Causal graphical models (CGMs) are 
an interpretation of  Bayes Nets.

What do CGMs give us?

Semantics of a Bayes Net = factorization.

Semantics of a CGM = factorization + intervention.

i.e., how to reason from first principles about the statement: setting X := x at time y 
causes P(Y) at  time t+1 to not equal P(Y) at time t



Deriving the interventional distribution w/do-calculus
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What does it look like to 
“intervene” on A?
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conditional probability 
distributions.



Deriving the interventional distribution w/do-calculus
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1 0 0

1 0 1

1 1 0
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What does it look like to 
“intervene” on A?

1. Set A=1 with probability 1

2. Remove incoming edges 
on A.

3. Update dependent 
conditional probability 
distributions.

Compare P(F) vs. P(F) under intervention



# use indices to denote values that the variable takes on
B = [0.99, 0.01]
E = [0.98, 0.02]
# outer index is B; inner is E. don't do this at home.
A = [[[0.99, 0.01], [0.10, 0.90]], [[0.05, 0.95], [0.01, 0.99]]]
# outer index is value of A
F = [[0.95, 0.05], [0.25, 0.75]]
L = [[0.90, 0.10], [0.05, 0.95]]

# P(F) -- naive
PF = [0, 0]
for f in [0, 1]:

for b in [0,1]: 
for e in [0,1]:

for a in [0,1]:
for l in [0,1]:

# P(F|A)P(L|A)P(A|B,E)P(B)P(E)
PF[f] += F[a][f]*L[a][l]*A[b][e][a]*B[b]*E[e]

print(PF) #[0.924079, 0.075921]
print(PF[0] + PF[1]) # 1.0



# use indices to denote values that the variable takes on
B = [0.99, 0.01]
E = [0.98, 0.02]
# outer index is B; inner is E. don't do this at home.
A = [[[0, 1], [0, 1]], [[0, 1], [0, 1]]]
# outer index is value of A
F = [[0.95, 0.05], [0.25, 0.75]]
L = [[0.90, 0.10], [0.05, 0.95]]
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PF = [0, 0]
for f in [0, 1]:
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print(PF[0] + PF[1]) # 0.99999999999
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A = [[[0, 1], [0, 1]], [[0, 1], [0, 1]]]
# outer index is value of A
F = [[0.95, 0.05], [0.25, 0.75]]
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# P(F | do(A := 1))
PF = [0, 0]
for f in [0, 1]:

for l in [0,1]:
# P(F|A)P(L|A)
PF[f] += F[a][f]*L[a][l]

print(PF) #[0.25, 0.74999999999]
print(PF[0] + PF[1]) # 0.99999999999



# use indices to denote values that the variable takes on
B = [0.99, 0.01]
E = [0.98, 0.02]
# outer index is B; inner is E. don't do this at home.
A = [[[0, 1], [0, 1]], [[0, 1], [0, 1]]]
# outer index is value of A
F = [[0.95, 0.05], [0.25, 0.75]]
L = [[0.90, 0.10], [0.05, 0.95]]

# P(F | do(A := 1))
PF = [0, 0]
for f in [0, 1]:

for l in [0,1]:
# P(F|A)P(L|A)
PF[f] += F[1][f]*L[1][l]

print(PF) #[0.25, 0.74999999999]
print(PF[0] + PF[1]) # 0.99999999999

Compare with 
P(F|A=1)



# use indices to denote values that the variable takes on
B = [0.99, 0.01]
E = [0.98, 0.02]
# outer index is B; inner is E. don't do this at home.
A = [[[0, 1], [0, 1]], [[0, 1], [0, 1]]]
# outer index is value of A
F = [[0.95, 0.05], [0.25, 0.75]]
L = [[0.90, 0.10], [0.05, 0.95]]

# P(F | do(A := 1))
PF = [0, 0]
for f in [0, 1]:

for l in [0,1]:
# P(F|A)P(L|A)
PF[f] += F[a][f]*L[a][l]

print(PF) #[0.25, 0.74999999999]
print(PF[0] + PF[1]) # 0.99999999999

When might 
P(F|A=1) =/= 

P(F|do(A:=1))?



Deriving the interventional distribution w/do-calculus

B

0.01 B E

A

F L

E

0.02

A B E

1 0 0

1 0 1

1 1 0

1 1 1
F A

0.75 1
L A

0.95 1

What does it look like to 
“intervene” on A?

1. Set A=1 with probability 1

2. Remove incoming edges 
on A.

3. Update dependent 
conditional probability 
distributions.

Do stuff on the board



# use indices to denote values that the variable takes on
B = [0.99, 0.01]
E = [0.98, 0.02]
# outer index is B; inner is E. don't do this at home.
A = [[[0.99, 0.01], [0.10, 0.90]], [[0.05, 0.95], [0.01, 0.99]]]
# outer index is value of A
F = [[0.95, 0.05], [0.25, 0.75]]
L = [[0.90, 0.10], [0.05, 0.95]]



# use indices to denote values that the variable takes on
B = [0.99, 0.01]
E = [0.98, 0.02]
# outer index is B; inner is E. don't do this at home.
A = [[[0.99, 0.01], [0.10, 0.90]], [[0.05, 0.95], [0.01, 0.99]]]
# outer index is value of A; inner is value of B
F = [[[0.99, 0.01], [0.98, 0.02]], [[0.97, 0.03], [0.96, 0.04]]]
L = [[0.90, 0.10], [0.05, 0.95]]



# use indices to denote values that the variable takes on
B = [0.99, 0.01]
E = [0.98, 0.02]
# outer index is B; inner is E. don't do this at home.
A = [[[0.99, 0.01], [0.10, 0.90]], [[0.05, 0.95], [0.01, 0.99]]]
# outer index is value of A; inner is value of B
F = [[[0.99, 0.01], [0.98, 0.02]], [[0.97, 0.03], [0.96, 0.04]]]
L = [[0.90, 0.10], [0.05, 0.95]]

PFdoA = [[0,0], [0,0]]
for f in [0,1]:

for a in [0,1]:
for l in [0,1]:

for b in [0,1]:
# P(F|do(A))P(L|do(A))P(B)
PFdoA[a][f] += F[a][b][f]*L[a][l]*B[b]

print(PFdoA)
# [[0.9899000000000001, 0.0101], [0.9699, 0.030099999999999995]]

Draw graph on board



What does this give us?
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We can compute the effect of 
setting A=0 vs. A=1 (denoted with 
“do”):

• Need to compute a meaningful 
quantity (not probability)

• Expectation!

E[F|do(A:=0) – F|do(A:=1)]

= E[F|do(A:=0)] – E[F|do(A:=1)]



What does this give us?
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We can compute the effect of 
setting A=0 vs. A=1 (denoted with 
“do”):

E[F|do(A:=0) – F|do(A:=1)]

= E[F|do(A:=0)] – E[F|do(A:=1)]

Compare P(F) and P(F) under intervention

# Feel free to compute over either the original graph (here) or the 
# modified one
PFdoA1 = [0,0]
for f in [0,1]:

for l in [0,1]:
PFdoA1[f] += F[1][f] * L[1][l]

PFdoA0 = [0,0]
for f in [0,1]:

for l in [0,1]:
PFdoA0[f] += F[0][f] * L[0][l]

EFdoA1 = sum([f * PFdoA1[f] for f in range(len(PFdoA1))])
EFdoA0 = sum([f * PFdoA0[f] for f in range(len(PFdoA0))])
print(EFdoA1 - EFdoA0)



What does this all mean?
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Remember: expectation can only 
be computed over random 
variables

Random variables are functions 
from outcomes to real numbers

Because these are Bernoulli (i.e., 
from the set {0, 1}) random 
variables, they can be 
manipulated as numbers…

…but this interpretation may not 
be meaningful!
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from outcomes to real numbers

Because these are Bernoulli (i.e., 
from the set {0, 1}) random 
variables, they can be 
manipulated as numbers…

…but this interpretation may not 
be meaningful!



What does this give us We may need to reason about latent or
unobserved nodes.

IRL we can manipulate the alarm.

IRL we can’t (or at least shouldn’t) 
cause an earthquake.

Do-calculus gives us a mechanism for 
reasoning about experimentation.
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Important high-level properties of CGMs

What’s the big deal with intervention?

• Addresses weaknesses of classical AI logics:

• Open world doesn’t matter

• Allows counterfactual reasoning

• Sparse representation (no cruft)

• c.f. deep learning, where we expect collinearities in features

• Represents invariance (with respect to other covariates)



Applications in AI

• Classically, planning

• Post-conditions as causal

• Problem: impedance mismatch in 

representation & tractability issues

• Recently: mechanism representation in 

machine learning

• CGMs as bridge between statistics and 

logic



Next Class: Epistemic Logics


