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Agenda

« Student hours — extended starting next week (will announce online)
- Recap: agents + search ‘
« What is uncertainty in state

« Representing uncertainty in state with Bayes nets

e Recentresearch

o But first...



¥ Dr Valeria dePaiva and 4 others liked

. Melanie Mitchell
@MelMitchelll

Amidst all the recent Twitter talk on the role of
symbols vs. deep learning in Al, | came across a very
interesting article by Allen Newell, published in 1982,
entitled "Intellectual Issues in the History of Artificial
Intelligence".

apps.dtic.mil/sti/pdfs/ADA12...
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7:30 PM - Mar 14, 2022 - Twitter Web App

151 Retweets 14 Quote Tweets 569 Likes



Scene

Agents search and plan
using heuristics and cost functions

over states.



Uncertainty causes
variability/variation

https://www.neverstopbuilding.com/blog/minimax



Representing state

« Tic tac toe: can represent as a vector

« Uncertainty over values in the vector

« Uncertainty due to game mechanics

 What about more complicated environmentse



Example: Uncertainty in the Environment
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What kinds of uncertainty might there be?



Sources of uncertainty

« Object uncertainty: presence or absence of an object

 Measurement error: bias that you might have uncertainty about
* Low-frequency events: may not have enough data to estimate

* Environmental randomness: truly random vs. population-based



Types of uncertainty

) (4

Epistemic (belief) Aleatory (“truly random”)

Implications for agent learning.




Break reasoning into events and objects

« States are composed of objects that have features that have values

« Canreason about values of those features with or without events

« Without: probability of being in a certain state (not efficientl)
« Events: relate actions and their effects

« Actions may be external to the agent (e.g., performed b

another agent)



Classic event example (sort of)

Scenario: Roberto is a defense robot with not currently hooked up to

respond to your alarm system.
The alarm system responds to both burglaries and earthquakes.

You ask your neighbors Fry and Leela --- who are always home --- to

switch him to Ymenace mode.”
Leela always calls, but sometimes confuses the alarm with other noise.

Fry often misses the alarm, due to watching TV too loudly.




Where’s the state?

« Roberto has a representation of your house
« Roberto has a state for *acting menacing”

« Goal: decide (probabilistically) whether to “*act menacing,”

depending on who has called.




How to do this?

Suppose we have historic data in a table consisting of: What do the following represent:
- Whether or not there was a burglary (B) of your house - Onerow in the table (R)?2

- Whether or not there was an earthquake (E) « The count of duplicates of R,

(including R;), divided by

number of rows (p;)¢

- Whether or not your alarm went off (A)

- Whether or not Fry called (F)

« A table containing @

- Whether or not Leela called (L) d thei it
an elr associatg




Factorizing P(B, E, A, F, L)

Recall: P(B,E, A, F, L)=P(B | E, A, F,L)*P(E | A, F, L)*P(A | F, L) *P(F | L) *P(L)
=P(L| F, A EB)*P(F| A E B)*P(A | E,B) *P(E | B) *P(B)

Background knowledge: phone calls, alarms, and burglaries don’'t change whether an earthqua
happens.

Assumption: phone calls, alarms, and earthquakes don’t change whether burglaries happe
Only earthquakes and burglaries set off the alarm.

Fry and Leela only sometimes activate Roberto




Factorizing P(B, E, A, F, L) Idea: P(v | parents(v)) =

P(v | parents (v) U
parents(parents(v))...)

P(B,E,A F,.L)=P(B| E,A F L) *P(E| A F L) *PA|FL)*PF]|L)*P(L)

=P(L | F, A E B)*P(F | A EB)*P(A | E B)JP(E | B)F P(B




Practically...

Don’'t need to rely on jointly collected data
Important for low-probability events!

« Can use historic data to better estimate P(E) and P(B)

* Lower uncertainty over the parameters

« Can use manufacturer data for P(A | E, B)

« ThenP(F | A)and P(L | A) are more about “belief”






Usage

Bayes nets are a type of “probabilistic graphical model”
« When used for learning, popular across machine learning before deep learning
« Was especially popular in NLP

« Now: mostly known for causal reasoning (later topic)

* Bleeding edge: renewed interest for explanation and fairness in deep learning



BLOG: Probabilistic Models with Unknown Objects*

Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong and Andrey Kolobov
Computer Science Division
University of California
Berkeley, CA 94720-1776
{milch, bhaskara, russell, dsontag, dlong, karayal } @cs .berkeley.edu

Abstract

This paper introduces and illustrates BLOG, a formal lan-
guage for defining probability models over worlds with
unknown objects and identity uncertainty. BLOG unifies
and extends several existing approaches. Subject to cer-
tain acyclicity constraints, every BLOG model specifies
a unique probability distribution over first-order model
structures that can contain varying and unbounded num-
bers of objects. Furthermore, complete inference algo-
rithms exist for a large fragment of the language. We
also introduce a probabilistic form of Skolemization for
handling evidence.

1 Introduction

Human beings and Al systems must convert sensory input
into some understanding of what’s out there and what’s going
on in the world. That is, they must make inferences about
the objects and events that underlie their observations. No
pre-specified list of objects is given; the agent must infer the
existence of objects that were not known initially to exist.

In many Al systems, this problem of unknown objects is
engineered away or resolved in a preprocessing step. How-
ever, there are important applications where the problem is
unavoidable. Population estimation, for example, involves
counting a population by sampling from it randomly and mea-
suring how often the same object is resampled; this would
be pointless if the set of objects were known in advance.
Record linkage, a task undertaken by an industry of more
than 300 companies, involves matching entries across multi-
ple databases. These companies exist because of uncertainty
about the mapping from observations to underlying objects.
Finally, multi-target tracking systems perform data associa-
tion, connecting, say, radar blips to hypothesized aircraft.

Probability models for such tasks are not new: Bayesian
models for data association have been used since the
1960s [Sittler, 1964]. The models are written in English and
mathematical notation and converted by hand into special-
purpose code. In recent years, formal representation lan-
guages such as graphical models [Pearl, 1988] have led to
general inference algorithms, more sophisticated models, and
automated model selection (structure learning). In Sec. 7, we
review several first-order probabilistic languages (FOPLs)

*This work was supported by DARPA under award 03-000219,
and by an NSF Graduate Research Fellowship to B. Milch.

that explicitly represent objects and the relations between
them. However, most FOPLs only deal with fixed sets of ob-
jects, or deal with unknown objects in limited and ad hoc
ways. This paper introduces BLOG (Bayesian LOGic), a
compact and intuitive language for defining probability dis-
tributions over outcomes with varying sets of objects.

We begin in Sec. 2 with three example problems, each of
which involves possible worlds with varying object sets and
identity uncertainty. We describe generative processes that
produce such worlds, and give the corresponding BLOG mod-
els. Sec. 3 observes that these possible worlds are naturally
viewed as model structures of first-order logic. It then defines
precisely the set of possible worlds corresponding to a BLOG
model. The key idea is a generative process that constructs a
world by adding objects whose existence and properties de-
pend on those of objects already created. In such a process,
the existence of objects may be governed by many random
variables, not just a single population size variable. Sec. 4
discusses how a BLOG model specifies a probability distribu-
tion over possible worlds.

Sec. 5 solves a previously unnoticed “probabilistic
Skolemization” problem: how to specify evidence about
objects—such as radar blips—that one didn’t know existed.
Finally, Sec. 6 briefly discusses inference in unbounded out-
come spaces, stating a sampling algorithm and a complete-
ness theorem for a large class of BLOG models, and giving
experimental results on one particular model.

2 Examples

In this section we examine three typical scenarios with un-
known objects—simplified versions of the population estima-
tion, record linkage, and multitarget tracking problems men-
tioned above. In each case, we provide a short BLOG model
that, when combined with a suitable inference engine, consti-
tutes a working solution for the problem in question.

Example 1. An urn contains an unknown number of balls—
say, a number chosen from a Poisson distribution. Balls are
equally likely to be blue or green. We draw some balls from
the urn, observing the color of each and replacing it. We
cannot tell two identically colored balls apart; furthermore,
observed colors are wrong with probability 0.2. How many
balls are in the urn? Was the same ball drawn twice?

The BLOG model for this problem, shown in Fig. 1, de-
scribes a stochastic process for generating worlds. The first 4

Work published 2005-2009

Milch'’s dissertation: very thorough

Kozen semantics -- theoretical CS
(FOCS 1979)

Church -- artificial intelligence
(UAI 2008)

Scenic — programming languages
(PLDI 2019)
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Next class: hands-on exercises using Bayes nets
Introduce partial observability
(bring your laptops)



