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A*

We now take the cost of getting to the nodes into account as well as
our estimate of the cost of getting to the goal from the node.

We define an evaluation function f(n) = g(n) + h(n)

g(n): the cost so far to reach n

h(n): the cost to the goal from n

The expansion always happens with the node of a lowest f-value in
the data structure.

A* is using what is called an admissible heuristic. This means that
h(n) ≤ h*(n) where h*(n) is the true cost of n.

We also require that the straight line distance in this example of an
h(n) table NEVER overestiatmes the actual road distance.
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A* Example
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A* Properties
Completeness

It is complete unless there are infinitely many nodes with f() ≤ f(G)
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A* Properties
Time Complexity

Exponential in terms of the relative error in the h() value table X the
length of the solution.
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A* Properties
Space Complexity

Keeps all nodes in memory
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A* Properties
Optimality

Yes.
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A* Properties
Optimality

Suppose there is some suboptimal goal G2 that has been generated
and is in the queue. Let n be an unexpanded node on a shortest path
to an optimal goal G.

Since f(G2) ≥ f(n), A* cannot ever select G2 for expansion.
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A* Optimality

h(n) is admissible

We are always assumping that the cost of any action between two
states is greater than zero and can’t be arbitrarily small.

So if we take h*(n) (which recall is the cost of an optimal path from
n to a goal node). An admissible heuristic is said to satisfy the
condition that h(n) ≤ h*(n)

h(n) is nonnegative and an underestimate of the cost of the shortest
path from n to a given goal node. It is always optimistic.

h(g) = 0 for any goal node g

h*(n) = ∞ if there is no path from n to a goal.
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Monotonicity

A monotone/consistent heuristic fully satisfies the triangle inequality.
So, for nodes n and n’ and for all actions we can take the following
holds.

h(n) ≤ c(n, a, n’) + h(n’)

C() is the cost of getting from the terminal state of n to the terminal
state of n’ via some action a.

(There is obviously going to be more than one action between teh two
nodes, in this example there is only one. In an example where there is
more than one action, the inequality has to hold for all of them.)

Monotonicity implies admissibility.

Note: You create heuristics that are admissible but that are NOT
monotonic. In these cases time and space complexity are the same,
and completeness still holds. Optimality can still hold as well but
there needs to be another argument added into the function.
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A* Lemma
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F-cost Contours

f(n) along any given path is always going to be decreasing. One way
to visualize this is to say that along a given path you can draw
contours around all the nodes that are increasing in cost in concentric
bands fanning out from a given node.
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f-cost Contours
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Beam Search
Completeness

We can reduce the space complexity of algorithms that expand out in
a ’best-first search’ style like A* and Greedy search by simply adding
a size limit on the frontier queue.

If we keep the frontier smaller than some fixed size we can only search
the top most promising nodes.

Beam search is obviously not optimal, there is no guarantee it will
find the best solution.

Beam search is also not complete. There is a chance that the only
route to a goal state could be pruned off the frontier and thus we
would never reach it.
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Heuristic Examples

One example shown in the book that is illustrative is the 8-puzzle. We
can design different heuristics for this, both of which are admissible.

h1(n) = number of misplaced tiles.

h2(n) = the total distance each tile is from its desired location.
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8-puzzle Example
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h1(S) = 6

h2(S) = 14
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Relaxed problems and heuristics

We can design optimal heuristics from relaxed versions of problems.

If the rules of the 8-puzzle are changed so that a tile can move
anywhere then h1(n) gives the shortest solution for example.

If the rules of the 8-puzzle were somehow relaxed so that a tile can
move to any adjacent square then h2(n) is going to give the shortest
solution each time.

Bottom Line: The optimal solution of a properly ’relaxed’ problem is
going to be no greater than (or at least as expensive as) the optimal
solution cost of the real problem.

Michael McConnell (University of Vermont) Artificial Intelligence March 15, 2022 22 / 51



Iterative Improvement Algos

The flipside to what we have been talking about are optimization
problems where any solution is ’good’ the goal state is the only thing
we care about and any path to get there is fine.

In these kinds of cases the state space is equivalent to a set of
complete configurations, and we might want to find an optimal
configuration or something that satisfies a set of constraints
intelligently.

Iterative improvement algorithms keep a single ’current’ state and try
to improve upon it over time.
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Travelling Sales Problem

11

Start off the problem with some complete route of the problem space.

And then you might perform pairwise exchanges on the graph (doing
just this simple pairwise exchange can get you within 1% of the
optimal solution oftentimes).
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N-Queens Example
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Put queens on a chessboard with no two queens in the same row,
column or diagonal (make them so they aren’t attacking any other
pieces).

Move a queen to reduce the number of conflicts.
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Hill Climbing Algorithm
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Hill Climbing Chart
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Simulated Annealing Pseudocode
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Adversarial Search

The tree and graph searches we have been looking at so far are
models that allow an agent to have free roam and complete control of
the given environ that they are operating in.

More formally: A state in the environ for these previous models does
not change unless the agent changes it.

But in the real world obviously things in the environment can change
outside of the control of the agent.

If we program a robot to perform an A* search over a graph-shaped
maze we have laid out on the floor, what does it do when it
soemthing falls in the way of the path it wants to take?

Search alone can merely find a path to a goal state, but the actions of
another agent or event might attempt to stop you from reaching that
optimal goal.
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Adversarial Search Cont.

We need to take the model of search we have previously discussed
and add on features which allow us to handle changes that are out of
our agents control.

The main way of discussing this is by modelling the search tree as a
game between our agent and some other agent(s).

The simplest way to model these opponents is to say that we are
trying to maximize our own scores in the game (some score vector),
while the other agents are trying to maximize their own score (usually
at the cost of minimizing ours).

Each agent is trying to alter the world in some way that allows it to
best benefit itself.
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Brief Examples of Game Types

Perfect Information: Types of games where all aspects of the game
state are fully observable to all the players. There are also imperfect
information games where some or all aspects of the game are hidden
(think poker).

Deterministic Games: Games with no ’chance’ involved in their
play, these can be either perfect or imperfect. Chess is a deterministic
perfect information game.

Zero-Sum Games: These are games that are fully competitive, if one
player wins, the other players lose. Again a good example is poker,
which involves both imperfect information and nondeterminsitic play.
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Two-Player Zero-Sum Games

In these types of games, we can model the game tree as essentially a
search tree. The different depths of the tree reflect the alternating
moves between the players as the game progresses.

At each depth we are performing some search over the current game
sub-tree in order to decide our next move.

Neither player decides where to go in the game tree themselves. After
one player moves to a given state the second player then decides
which of the children of that state get chosen.

Since the moves of the second player will change the direction of the
game we have to come up with some strategy to overcome them
basee on what they pick.
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Minimax Algorithm

Simple: Always assume that the other player is going to make the
best move that they can make. After doing so we always play a move
that will minimize the payoff of the other player. By minimizing the
other player, we maximize ours.

Gives us perfect play for deterministic, perfect-information games
(with obvious space/time complexity caveats on this statement).

Note: If you know ahead of time that the opponent is going to play
badly there are massive optimizations that can be made which can
give you better payouts.
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Minimax Algorithm

The values for each state are what the player Max (the root node
player) will get for their score if both players choose their best moves
in the tree.

If the opponent plays poorly the Max player can do better, but they
won’t ever do worse than the play given by the minimax algorithm.

Reiterate: For the pseduocode on the next slide to work the game
tree is assumed to be finite.
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Minimax Algorithm Pseudocode
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Minimax Example
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Minimax Properties
Completeness

It is complete only if the tree we are looking at is finite. (Note that
chess for example is technically a finite game with 1027586 possible
games.)
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Minimax Properties
Time Complexity

O(bm)
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Minimax Properties
Space Complexity

O(bm)
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Minimax Properties
Optimality

Yes, if the opponent is also playing optimally.
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Alpha-Beta Pruning

There are obvious optimizations we can perform that still give us the
same completeness and optimality properties but that improve our
complexity.

To make a correct decision we do not have to look at the entire tree,
after generating only some children at a given depth we can infer that
a particular branch will not be picked and can thus stop evaluating.

There are two types of cuts, max-cuts and min-cuts (referred to from
here on as alpha cuts and beta cuts respectively).
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Alpha-Beta Pruning Algo
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Alpha-Beta Pruning Example
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Alpha-Beta Pruning Example
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Alpha-Beta Pruning Example

21

21Artificial Intelligence: A Modern Approach, Norvig and Russell, 2020
Michael McConnell (University of Vermont) Artificial Intelligence March 15, 2022 45 / 51



Alpha-Beta Pruning Example

22

22Artificial Intelligence: A Modern Approach, Norvig and Russell, 2020
Michael McConnell (University of Vermont) Artificial Intelligence March 15, 2022 46 / 51



Alpha-Beta Pruning Example
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Alpha-Beta Pruning
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Alpha-Beta Properties

Pruning (as we said) does not impact the final result.

If we have the move branches ordered in an ideal way depending on
the game we can improve the effectiveness of our pruning algorithm.

With an ideal or ’perfect’ ordering it can be shown that the time
complexity reduces to O(bm/2)

What does this mean in practice? In theory, you can search twice as
deep on average.

Aside: When IBM added Alpha-Beta pruning to their chess computer
Deep Blue the average branches at each edge were reduced from 35
down to 6.
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Nondeterministic Minimax
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Dice Example
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