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Problem Solving Agent
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Types of Problems

Deterministic: Fully observable single state problems. These involve
an agent knowing exactly which state it will be in given a certain
action, each solution is a sequence of actions.

Non-Observable: These are problems wherein an agent may not
have any idea about where it actually is at any given point in time.
The solution still takes the form of a sequence.

Nondeterministic: These are also called partially observable
problems. In these problem types, each observation provides new
information about the current state. The solution is a kind of plan or
overarching policy to be followed. Searching and execution of action
are often combined.

Unknown State Spaces: What we generally refer to as Online
Search, or problems involving exploration of a search space.
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Map of Romania
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Map Example

What is our Goal?

We want to arrive in Bucharest

We are starting out from Arad.

Each state is one of the cities.

Each action is a drive between the cities.

The solution consists of a sequence of the cities.
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Tree Search Algorithm Outline
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Tree Search Algorithm

Essentially we will simulate the exploration of the state space
and generate successors of already-explored states (it just
expands the tree).
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Map Example
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Map Example
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Map Example
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Tree Search Expansion Algorithm
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What is a State vs a Node

States: A representation of the physical configuration.

Node: A kind of data structure or object which holds information
about the search tree. In our example this includes parent nodes,
children, depth, path-cost, etc.

Expand: The function creates new nodes, filling the various fields up

SuccessorFN: This function is gathering all the corresponding states
according to our problem description.
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Search Strategy

A strategy is defined by picking the order of each expansion.
Expansion is really the core of our actions here.

Strategies are evaluated along four dimensions:
Completeness → Does the algorithm always find a solution if one
exists?

Time Complexity → What number of nodes are required to be
examined or ’expanded’ in the process?

Space Complexity → How many nodes do we have stored in memory
throughout the process?

Optimality → Does it always find a least-cost solution? (this implies
actions have costs, sometimes they might not)
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Time and Space Complexity

We will be measuring these in terms of:

b: The maximum branching factor of the search tree

d: The depth of the least-cost solution

m: The maximum depth of the state space (which can potentially be
infinite).
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Uninformed Search Strategies

When a strategy is uninformed it adopts a fixed rule for selecting
what to expand next.

The rule for what to do never changes, it has no regard for the search
problem that is being solved.

These strategies cannot utilize any domain specific information about
the search problem that is being solved.
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Breadth First Search

With BFS we define expansion as simply taking the shallowest
unexpanded node and expanding it.

Here the frontier or ’fringe’ is defined as a FIFO queue, where all the
new successors get placed at the end each time.
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Breadth First Search Example
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Breadth First Search Example
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Breadth First Search Example
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Breadth First Search Example
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Breadth First Search Properties
Completeness

All shorter paths are epanded prior to any longer path, thus we
eventually examine every path at each depth. If a solution exists at
that depth it is found.

This is complete as long as the b (The maximum branching factor of
the search tree) is finite.
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Breadth First Search Properties
Time Complexity

We can define this as O(bd+1). Meaning that it is exponential with
respect to the depth of the least-cost solution.

Reminder: b is the maximum branching factor, and d is the depth of
the shortest solution.

1 + b + b2 + b3 + ..+ bd + b(bd − 1)
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Breadth First Search Properties
Space Complexity

This is going to be the same as the last slide O(bd+1).
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Breadth First Search Properties
Optimality

If path costs are random like in our Romania example, no. Yes, if the
cost for each step is 1.

Why?: The ’shortest’ solution on the tree is not necessarily the
cheapest solution if actions have varying costs.

Michael McConnell (University of Vermont) Artificial Intelligence March 15, 2022 24 / 61



Uniform Cost Search

This is equivalent to breadth first search, but with all the step costs
equal.

The frontier is a queue ordered by the path cost of each node with
the lowest first.

Complete: Yes if there is a step cost ≥ ϵ > 0
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Depth First Search

With DFS we define expansion as simply taking the deepest
unexpanded node and expanding it.

The frontier here is defined as a LIFO queue, where all the new
successors get placed at the front each round.
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Depth First Search Example
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Depth First Search Example
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Depth First Search Example
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Depth First Search Example
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Depth First Search Example
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Depth First Search Example
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Depth First Search Example
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Depth First Search Example
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Depth First Search Example
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Depth First Search Example
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Depth First Search Example
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Depth First Search Example
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Depth First Search Properties
Completeness

No, this fails for any infinite depth spaces or spaces with loops. It can
be modified to avoid repeating states along a given pathway.

If you modify it, it can be complete in the context of a finite spaces.
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Depth First Search Properties
Time Complexity

O(bm) so this gives us a bad time complexity in any case where the
maximum depth is much larger than depth of the least-cost solution.

If the solutions are dense it may be faster than breadth-first.
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Depth First Search Properties
Space Complexity

Space Complexity: O(bm)
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Depth First Search Properties
Optimality

Optimality: No.
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Informed Search

Good search strategies are defined by picking the order of node
expansion

The core idea of BFS algorithms is that we can use some evaluation
function as a criteria. We evaluate each node according to some
heuristic estimate of desirability’.

Expansion: Expand te most desirable unexpanded node.

The frontier is defined as a queue sorted in decreasing order of our
desirability metric.

The two common types are Greedy and A*.
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Informed Search
Straight Line Heuristic

In our Romania example, we as outside observers never want to be
going in the opposite direction from the goal. This is clearly
completely wrong.

We want to instead look-ahead to the goal and try to orient ourselves
towards that.

In the textbook these heuristic functions are often written h(n), which
is taken to mean the estimated cost of the cheapest path from a node
in to a goal node.
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Straight-Line Heuristic
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Greedy Search

Evaluation Function: We are defining the evaluation function h(n)
to be the straight line distance from a node n to Bucharest.

The greedy search simply expands the node that appears based on
our heuristic to be closest to the goal.
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Greedy Search Example
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Greedy Search Example
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Greedy Search Example
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Greedy Search Example
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Greedy Search Properties
Completeness

No, it can get stuck in a loop, for example in the Romania map. If
Oradea is the goal we can get stuck in a loop Iasi ⇒ Neamt ⇒ Iasi
⇒ Neamt, etc. (show on the graph if people are curious)

It is complete in a finite space with checks for repeating states.
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Greedy Search Properties
Time Complexity

O(bm) but in cases where a good heuristic is developed the time
complexity can be reduced significantly.
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Greedy Search Properties
Space Complexity

O(bm) because it has to keep all nodes and their associated
desirability metric in memory as it goes.
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Greedy Search Properties
Optimality

Optimality: No.
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A* Search Algorithm

f(n) = g(n) + h(n)

g(n): the cost so far to reach n

h(n): the cost to the goal from n

f(n): estimated total cost of path through n to the goal.
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A* Search Example
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A* Search Example
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A* Search Example
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A* Search Example
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A* Search Example
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A* Search Example
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